固体力学与飞行器总体设计

襟翼机构断裂故障模拟与强度试验

  • 王彬 ,
  • 刘玮 ,
  • 郑建军 ,
  • 黄勇 ,
  • 王孟孟 ,
  • 傅晗昕
展开
  • 1.中国飞机强度研究所 强度与结构完整性全国重点实验室,西安 710065
    2.西安交通大学 航天航空学院 机械结构强度与振动国家重点实验室,西安 710049
    3.中国商用飞机有限责任公司 上海飞机设计研究院,上海 201210
.E-mail: lookat59@126.com

收稿日期: 2024-09-20

  修回日期: 2024-11-27

  录用日期: 2024-12-02

  网络出版日期: 2024-12-05

Fracture fault simulation and strength test of flap mechanism

  • Bin WANG ,
  • Wei LIU ,
  • Jianjun ZHENG ,
  • Yong HUANG ,
  • Mengmeng WANG ,
  • Hanxin FU
Expand
  • 1.National Key Laboratory of Strength and Structural Integrity,Aircraft Strength Research Institute of China,Xi’an 710065,China
    2.State Key Laboratory for Strength and Vibration of Mechanical Structures,School of Aerospace,Xi’an Jiaotong University,Xi’an 710049,China
    3.Shanghai Aircraft Design and Research Institute,Commercial Aircraft Corporation of China,Ltd. ,Shanghai 201210,China
E-mail: lookat59@126.com

Received date: 2024-09-20

  Revised date: 2024-11-27

  Accepted date: 2024-12-02

  Online published: 2024-12-05

摘要

襟翼是民用运输类飞机起飞和降落过程中重要的增生装置,襟翼系统的可靠性对飞行运行安全有着至关重要的作用。国内外开展了大量襟翼机构故障仿真分析工作,但针对物理试验相关技术的研究资料较少。研究了襟翼机构断裂故障模拟技术并设计了襟翼作动器脱开假件,实现了襟翼作动器正常状态和故障状态的功能切换。设计了满足试验要求的吸能元件和襟翼交联装置假件,通过落锤试验获得了吸能元件能量标定曲线。在全尺寸结构上开展了襟翼机构故障模拟和强度试验,真实模拟了襟翼在飞行过程中可能出现的单作动器断裂故障,获得了准确的故障后襟翼姿态和机构传力路径变化、襟翼交联装置自由行程和冲击能量,为交联装置设计参数优化提供了依据。

本文引用格式

王彬 , 刘玮 , 郑建军 , 黄勇 , 王孟孟 , 傅晗昕 . 襟翼机构断裂故障模拟与强度试验[J]. 航空学报, 2025 , 46(10) : 231243 -231243 . DOI: 10.7527/S1000-6893.2024.31243

Abstract

Flap is an important accretion device in the take-off and landing of civil transport aircraft. The reliability of flap system plays a vital role in flight safety, and airworthiness regulations explicitly require safe return capacities after flap failure. A significant amount of simulation and analysis work of flap mechanism fault has been carried out at home and abroad, but there is relatively little research data on physical test technologies. The simulation technology of flap mechanism fracture fault is studied and the flap actuator disengagement dummy is designed to realize the function switching between normal and fault state of flap actuator. The energy absorbing element and flap interconnect structure dummy were designed to meet the test requirements, and the energy calibration curve of the energy absorbing element was obtained through the drop hammer test. The flap mechanism fault simulation and strength test were carried out on the full-size structure, and the possible single actuator fracture fault of the flap during flight was simulated. Accurate flap attitude and mechanism force transfer path change, flap interconnect structure free travel, and impact energy were obtained after the fault, which provided foundation for optimizing the design parameters of the flap interconnect structure dummy.

参考文献

1 NEIGAPULA S N V, MADDULA S P, NUKALA V B. A study of high lift aerodynamic devices on commercial aircrafts[J]. Aviation202024(3): 123-136.
2 WAN Q, LIU G, SONG C Y, et al. Study on the dynamic interaction of multiple clearance joints for flap actuation system with a modified contact force model[J]. Journal of Mechanical Science and Technology202034(7): 2701-2713.
3 史佑民, 杨新团. 大型飞机高升力系统的发展及关键技术分析[J]. 航空制造技术201659(10): 74-78.
  SHI Y M, YANG X T. Development and critical technology analysis for high lift system of large aircraft[J]. Aeronautical Manufacturing Technology201659(10): 74-78 (in Chinese).
4 李丽雅. 大型飞机增升装置技术发展综述[J]. 航空科学技术201526(5): 1-10.
  LI L Y. Review of high-lift device technology development on large aircrafts[J]. Aeronautical Science & Technology201526(5): 1-10 (in Chinese).
5 冯蕴雯, 唐家强, 薛小锋, 等. 考虑磨损演化的铰链式襟翼机构动力学仿真研究[J]. 西北工业大学学报202442(2): 222-231.
  FENG Y W, TANG J Q, XUE X F, et al. Study on dynamic simulation of hinged flap mechanism considering wear evolution[J]. Journal of Northwestern Polytechnical University202442(2): 222-231 (in Chinese).
6 朱昆鹏. 民机襟翼运动机构可靠性试验研究[D]. 南京: 南京航空航天大学, 2011.
  ZHU K P. Test and research of flap movement mechanism reliability for the civil aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese).
7 中国民用航空局. 中国民用航空规章第25部-运输类飞机适航标准: CCAR-25-R4 [S]. 北京: 中国民用航空局, 2011.
  Civil Aviation Administration of China. Civil aviation regulations of China, part 25-airworthiness standards for transport aircraft: CCAR-25-R4 [S]. Beijing: Civil Aviation Administration of China, 2011 (in Chinese).
8 European Aviation Safety Agency. Easy access rules for large aeroplanes (CS 25) (Amendment 5) [S]. Cologne: European Aviation Safety Agency, 2008.
9 GUELZAU H. Flexible multi-body modeling and simulation of flap systems in transport aircraft determination of dynamics and failure loads?[C]?∥MSC SoftwareVPD Conference. California: MSC Software, 2006.
10 JáNOS Z, CHRISTOPH W. Modeling smooth contacts in elastic multibody systems[C]?∥Multibody Dynamics 2009, ECCOMAS Thematic Conference. 2009.
11 冯蕴雯, 何智宇, 唐家强, 等. 民用飞机顺气流襟翼机构故障工况动力学仿真研究[J]. 航空工程进展202314(4): 85-93.
  FENG Y W, HE Z Y, TANG J Q, et al. Dynamics simulation research on fault conditions of deflecting to airflow flap mechanism of civil aircraft?[J]. Advances in Aeronautical Science and Engineering202314(4): 85-93 (in Chinese).
12 谢沅辰, 麦云飞, 徐杭东. 基于AMEsim飞机襟翼液压系统故障分析与仿真[J]. 农业装备与车辆工程202058(2): 141-145.
  XIE Y C, MAI Y F, XU H D. Fault analysis and simulation of flap hydraulic system based on AMEsim[J]. Agricultural Equipment & Vehicle Engineering202058(2): 141-145 (in Chinese).
13 陈炎, 董萌. 民用飞机襟翼运动机构运动可靠性分析及优化设计[J]. 机械设计与制造工程202150(6): 38-42.
  CHEN Y, DONG M. Movement reliability analysis and optimization of civil aircraft’??s flap mechanism?[J]. Machine Design and Manufacturing Engineering202150(6): 38-42 (in Chinese).
14 周杰. 襟翼机构运动可靠性仿真分析[D]. 沈阳: 东北大学, 2018.
  ZHOU J. Simulation and analysis of movement reliability of flap mechanism[D]. Shenyang: Northeastern University, 2018 (in Chinese).
15 钟云龙, 张钟文, 张大鹏, 等. 基于失效模式的襟翼运动机构可靠性仿真分析[J]. 电子产品可靠性与环境试验201937(5): 1-7.
  ZHONG Y L, ZHANG Z W, ZHANG D P, et al. Reliability simulation analysis of a flap motion mechanism based on failure modes[J]. Electronic Product Reliability and Environmental Testing201937(5): 1-7 (in Chinese).
16 KURT A. Failure protection device for flap systems on aircraft main planes: DE3505839C2[P]. 1989-11-09.
17 POPPE B, AUHAGEN K. Flap interconnection system for aircraft: US7546984[P]. 2009-06-16.
18 黄勇, 田忠良, 吴强, 等. 内外襟翼交联装置: CN107161325B[P]. 2018-09-11.
  HUANG Y, TIAN Z L, WU Q, et al. The interconnection device between inner and outer flaps: CN107161325B[P]. 2018-09-11 (in Chinese).
19 周晓宸, 罗宇波, 薛璞, 等. 大型民机襟翼间交联系统设计方法研究[J]. 西北工业大学学报202240(4): 717-722.
  ZHOU X C, LUO Y B, XUE P, et al. Design method of interconnection struts between flaps of large transport aircraft[J]. Journal of Northwestern Polytechnical University202240(4): 717-722 (in Chinese).
20 章仕彪. 大型客机作动器脱开故障襟翼动力学特性研究[D]. 南京: 南京航空航天大学, 2021.
  ZHANG S B. Study on flaps dynamic characteristics of an airliner with actuator disconnected failure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese).
21 黄勇, 徐武, 朱林刚, 等. 大型客机后缘襟翼操纵与非对称控制[J]. 力学季刊202243(1): 110-121.
  HUANG Y, XU W, ZHU L G, et al. Trailing-edge flap operation and asymmetric control for large passenger aircraft[J]. Chinese Quarterly of Mechanics202243(1): 110-121 (in Chinese).
22 张柁, 宋鹏飞, 尹伟, 等. 空间复杂运动增升结构随动加载技术[J]. 航空学报202243(6): 526044.
  ZHANG T, SONG P F, YIN W, et al. Follow-up loading technology for lift structure with spatial complex movement[J]. Acta Aeronautica et Astronautica Sinica202243(6): 526044 (in Chinese).
23 刘玮, 刘冰, 郑建军. 襟翼运动机构全尺寸疲劳试验技术研究[J]. 工程与试验202262(2): 37-38.
  LIU W, LIU B, ZHENG J J. Research on full-scale fatigue test technology of flap mechanism[J]. Engineering & Test202262(2): 37-38 (in Chinese).
24 贺谦, 夏峰, 许飞, 等.大型运输机增升结构多参量耦合疲劳试验方法[J/OL]. 航空动力学报1-8[2024-07-15]. .
  HE Q, XIA F, XU F,et al. Spatial motion aircraft lift-rising structure life verification method with coupled multiparameter[J]. Journal of Aerospace Power1-8[2024-07-15]. (in Chinese).
25 高煜翔, 陆建国, 方俊伟, 等. 民机襟翼交联机构吸能元件的吸能特性[J]. 航空动力学报202237(8): 1771-1779.
  GAO Y X, LU J G, FANG J W, et al. Energy absorption characteristics of energy-absorbing elements of civil aircraft flap crosslinking mechanism[J]. Journal of Aerospace Power202237(8): 1771-1779 (in Chinese).
26 ALEXANDER J M. An approximate analysis of the collapse of thin cylindrical shells under axial loading[J]. The Quarterly Journal of Mechanics and Applied Mathematics196013(1): 10-15.
27 余同希. 结构的耐撞性和能量吸收装置[J]. 力学与实践19857(3): 2-9.
  YU T X. Structural crashworthiness and energy absorption device[J]. Mechanics and Engineering19857(3): 2-9 (in Chinese).
28 雷君相, 李笠. 圆管缩径能量吸收装置的研究[J]. 塑性工程学报19952(2): 57-64.
  LEI J X, LI L. Research for cylindrical tube sinking energy absorbing devices[J]. Journal of Plasticity Engineering19952(2): 57-64 (in Chinese).
29 徐龙江, 雷君相, 高贵杰. 变径管与薄壁圆管轴向压缩过程研究[J]. 机械工程与自动化2015(3): 137-138.
  XU L J, LEI J X, GAO G J. Study on axial compression of thin wall cylinder tube and variable-diameter tube[J]. Mechanical Engineering & Automation2015(3): 137-138 (in Chinese).
30 崔自轩, 雷君相. 材料性能对变径管自由翻转变形模式的影响[J]. 有色金属工程20177(6): 5-8.
  CUI Z X, LEI J X. Impact of material properties on variable diameter tube free inversion deformation model[J]. Nonferrous Metals Engineering20177(6): 5-8 (in Chinese).
31 李伟, 雷君相, 汪奇超, 等. 双直径圆管能量吸收元件的研究[J]. 热加工工艺201140(23): 100-102.
  LI W, LEI J X, WANG Q C, et al. Research on energy-absorbing component dual-diameter tube[J]. Hot Working Technology201140(23): 100-102 (in Chinese).
文章导航

/