Ionospheric gradient is the major risk source to be monitored at the atmospheric segment for the BeiDou navigation satellite system (BDS) joint precision approach and landing system. The phase observations collected from multiple short-baseline reference receivers installed on the aircraft carrier are always leveraged to monitor the ionospheric gradient. The topologies of reference receivers determine the sensitivity of ionospheric gradient monitoring. The limitation due to the carrier's moving deck and the incorrect ambiguity fixing, simultaneously, the ionospheric gradient monitoring sensitivity based on the traditional planar topologies is inevitably reduced. Therefore, a spatial reference receivers’ topologies design method is proposed. By constructing a cost function representing the dead-zone of ionospheric gradient monitoring, the topologies of reference receivers can be adjusted based on the constructed cost function to reduce the monitoring dead-zone, thereby improving the sensitivity of ionospheric gradient monitoring during the precise approach phase. Additionally, a suboptimal spatial topology of reference receivers, considering the constraints of attitude changes, has been proposed to meet the installation requirements of the carrier. Simulation results show that the monitoring sensitivity of the proposed regular tetrahedron topology can be immune to attitude changes when the ambiguity is correctly fixed. Furthermore, when compared with the traditional planar square topology, the designed suboptimal spatial topologies can reduce the monitoring dead-zone by 39.32%.
[1]RIFE J, KHANAFSEH S, PULLEN S, et al.Navigation,interference suppression,and fault moni-toring in the sea-based joint precision approach and landing system[J].Proceedings of the IEEE, 2008, 96(12):1958-1975
[2]LUNGU M, CHEN M, Dinu D.Backstepping-and sliding mode-based automatic carrier landing Sys-tem with deck motion estimation and compensation[J].Aerospace, 2022, 9(11):644-673
[3]王永庆.固定翼舰载战斗机关键技术与未来发展[J].航空学报, 2021, 42(08):21-34
[4]PERVAN B, CHAN F, GEBRE E D, et al.Perfor-mance analysis of carrier-phase DGPS navigation for shipboard landing of aircraftNavigation[J].Navigation, 2003, 50(3):181-191
[5]HAN H.Visual navigation method for carrier-based aircraft landing[J].Journal of Physics: Conference Se-ries, 2022, 2166(1):012005-012012
[6]王官龙, 崔晓伟, 陆明泉.北斗三频海基无故障导航算法[J].航空学报, 2017, 38(12):268-276
[7]SOKOLOVA N, MORRISON A, JACOBSEN K S.High latitude ionospheric gradient observation results from a multi-scale network[J].Sensors, 2023, 23(4):2062-2075
[8]WANG Z P, LI T L, LI Q, et al.Impact of anomalous ionospheric gradients on GBAS in the low-latitude re-gion of China[J].GPS Solutions, 2021, 25(2):1-13
[9]程建华, 李家祥, 李亮, 等.多参考地基增强系统电离层梯度完好性监测方法[J].中国惯性技术学报, 2021, 29(04):467-474
[10]LI W, JIANG Y P.Risk overbounding for ionospheric gradient monitor using geometry-free double differ-enced carrier phase measurements[J].GPS Solutions, 2024, 28(3):1-14
[11]AFFONSO B J, MORAES A, SOUSASANTOS J, et al.Strong ionospheric spatial gradient events induced by signal propagation paths aligned with equatorial plasma bubbles[J].IEEE Transactions on Aerospace and Elec-tronic Systems, 2022, 58(4):2868-2879
[12]JIANG Y P, SHAO J H.Code-Carrier coherence moni-toring for dual frequency SBAS[J].Advances in Space Research, 2024, 74(2):727-739
[13]BUDTHO J, SUPFNITHI P, SAITO S, et al.Single-frequency time-step ionospheric delay gradient estima-tion at low-latitude stations[J]. IEEE Access, 2020, 8: 201516-201526.[J].IEEE Access, 2020, 8(1):201516-201526
[14]PATEL J, KHANAFSEH S, PERVAN B, et al.Detect-ing hazardous spatial gradients at satellite acquisition in GBAS[J].IEEE Transactions on Aerospace and Elec-tronic Systems, 2020, 56(4):3214-3230
[15]SHAHID K, GURFIL P.Carrier phase null space moni-tor for ionospheric gradient detection[J].IEEE Transac-tions on Aerospace and Electronic Systems, 2014, 50(4):3230-3243
[16]WANG Z P, YU Y, DAN S, et al.Dual smoothing iono-spheric gradient monitoring algorithm for dual-frequency BDS GBAS[J].Chinese Journal of Aero-nautics, 2020, 33(12):3395-3404
[17]KHANAFSEH S, PULLEN S, WARBURTON J.Carri-er phase ionospheric gradient ground monitor for GBAS with experimental validation[J].Navigation, 2012, 59(1):51-60
[18]李家祥, 程建华, 李亮, 等.对流层异常完好性监测参数研究[J].航空学报, 2024, 45(07):208-220
[19]LI J X, YIN H, CHENG J H, et al.A two-step non-nominal troposphere monitor for GBAS[J].GPS Solu-tions, 2023, 27(4):176-189
[20]LI L, LIU X S, JIA C, et al.Integrity monitoring of carrier phase-based ephemeris fault detection[J].GPS Solutions, 2020, 24(43):1-13
[21]张悦, 王志鹏, 李强.GBAS基准站布设方案设计与评估方法[J]. 北京航空航天大学学报, 2018. 44(12): 2545-2555.[J].北京航空航天大学学报, 2018, 44(12):2545-2555
[22]JING J, KHANAFSEH S, LANGEL S, et al.Optimal antenna topologies for spatial gradient detection in dif-ferential GNSS[J].Radio Science, 2015, 50(7):728-743
[23]CHENG J H, LI J X, LI L, et al.Carrier phase-based ionospheric gradient monitor under the mixed Gaussian distribution[J].Remote Sensing, 2020, 12(23):3915-3931
[24]徐峰, 周心桃, 李德聪, 等.国外典型航母目标特性探析[J].舰船科学技术, 2018, 40(9):151-157
[25]喻思琪, 张小红, 郭斐等.卫星导航进近技术进展[J].航空学报, 2019, 40(3):11-32
[26]贾春, 赵琳, 李亮, 等.改正接收机频间偏差的短基线北斗三频紧组合方法[J].中国科学: 地球科学, 2020, 50(1):90-103
[27]WANG Y, ZHANG Y, XU D, et al.A deformation measurement algorithm based on adaptive variable pa-rameter multiple model for large ships[J]. IEEE Trans-actions on Instrumentation and Measurement, 2021, 70: 1-10.[J].IEEE Transactions on Instrumentation and Measurement, 2021, 10(1):1-10
[28]PETOVELLO M G, O' KEEFE K, LACHAPELLE G, et al.Measuring aircraft carrier flexure in support of au-tonomous aircraft landings[J].IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2):523-535