顾及电离层梯度监测的JPALS阵列接收机设计
收稿日期: 2024-08-19
修回日期: 2024-10-31
录用日期: 2024-11-18
网络出版日期: 2024-12-05
基金资助
国家自然科学基金(62373117)
JPALS reference receivers topology design for ionospheric gradient monitoring
Received date: 2024-08-19
Revised date: 2024-10-31
Accepted date: 2024-11-18
Online published: 2024-12-05
Supported by
National Natural Science Foundation of China(62373117)
电离层梯度是北斗卫星导航联合精密进近着舰系统(JPALS)在空间大气层所需监测的主要风险源,利用母舰多重短基线参考接收机的载波相位观测量可有效监测电离层梯度,而参考接收机阵列构型决定了电离层梯度监测的灵敏度。由于母舰复杂姿态变化以及整周模糊度固定错误的双重制约,导致传统平面型参考接收机阵列的监测灵敏度降低。为此,提出一种空间型参考接收机阵列设计方法,通过构建表征电离层梯度监测盲区的代价函数,优化参考接收机阵列构型以缩小监测盲区,从而提升精密进近阶段电离层梯度监测的灵敏度。同时,针对母舰的适装需求,提出约束姿态变化的次优空间型参考接收机阵列,以提高参考接收机布设的灵活性。仿真结果表明,在整周模糊度固定正确条件下,正四面体构型的监测灵敏度可免疫母舰姿态变化的影响。此外,相比于传统平面正方形构型,所设计的次优空间构型的监测盲区最大可减小39.32%。
徐鑫 , 李亮 , 李家祥 , 蒋家昌 , 危亦林 . 顾及电离层梯度监测的JPALS阵列接收机设计[J]. 航空学报, 2025 , 46(8) : 331075 -331075 . DOI: 10.7527/S1000-6893.2024.31075
Ionospheric gradient is the major risk source to be monitored at the atmospheric segment for the Joint Precision Approach and Landing System (JPALS) of the BeiDou navigation satellite system (BDS). The phase observations collected from multiple short-baseline reference receivers installed on the aircraft carrier are always leveraged to monitor the ionospheric gradient. The topologies of reference receivers determine the sensitivity of ionospheric gradient monitoring. The limitations due to the carrier’s moving deck and the incorrect ambiguity fixing, the ionospheric gradient monitoring sensitivity based on the traditional planar topologies is inevitably reduced. In this paper, a design method of spatial reference receivers’topologies is proposed. A cost function representing the dead-zone of ionospheric gradient monitoring is constructed to adjust the topologies of reference receivers and to reduce the monitoring dead-zone, thereby improving the sensitivity of ionospheric gradient monitoring during the precise approach phase. Additionally, a suboptimal spatial topology of reference receivers, considering the constraints of attitude changes, is proposed to meet the installation requirements of the carrier. Simulation results show that the monitoring sensitivity of the proposed regular tetrahedron topology can be immune to attitude changes when the ambiguity is correctly fixed. Furthermore, when compared with the traditional planar square topology, the designed suboptimal spatial topologies can reduce the monitoring dead-zone by 39.32%.
Key words: BDS JPALS; integrity; ionospheric gradient; monitoring sensitivity; spatial topology
1 | RIFE J, KHANAFSEH S, PULLEN S, et al. Navigation, interference suppression, and fault monitoring in the sea-based joint precision approach and landing system[J]. Proceedings of the IEEE, 2008, 96(12): 1958-1975. |
2 | LUNGU M H, CHEN M, V?LCIC? DINU D A. Backstepping- and sliding mode-based automatic carrier landing system with deck motion estimation and compensation[J]. Aerospace, 2022, 9(11): 644. |
3 | 于志同, 黄彦, 胡洛佳, 等. 面向极地航运的卫星观测技术发展研究[J]. 船舶, 2023, 34(1): 12-19. |
YU Z T, HUANG Y, HU L J, et al. Research on the status and development trend of satellite observation technology for polar shipping[J]. Ship & Boat, 2023, 34(1): 12-19 (in Chinese). | |
4 | 王永庆. 固定翼舰载战斗机关键技术与未来发展[J]. 航空学报, 2021, 42(8): 525859. |
WANG Y Q. Fixed-wing carrier-based aircraft: key technologies and future development[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525859 (in Chinese). | |
5 | PERVAN B, CHAN F C, GEBRE-EGZIABHER D, et al. Performance analysis of carrier-phase DGPS navigation for shipboard landing of aircraft[J]. Navigation, 2003, 50(3): 181-191. |
6 | 郭鹍, 陆玮, 王兴川, 等. 极地通信导航及探冰设备现状与发展[J]. 船舶, 2023, 34(1): 143-153. |
GUO K, LU W, WANG X C, et al. State-of-the-art of polar navigation and ice exploration equipment[J]. Ship & Boat, 2023, 34(1): 143-153 (in Chinese). | |
7 | HAN H. Visual navigation method for carrier-based aircraft landing[J]. Journal of Physics: Conference Series, 2022, 2166(1): 012005. |
8 | 王官龙, 崔晓伟, 陆明泉. 北斗三频海基JPALS无故障导航算法[J]. 航空学报, 2017, 38(12): 321340. |
WANG G L, CUI X W, LU M Q. Triple-frequency sea-based JPALS fault-free navigation algorithm for BDS[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12): 321340 (in Chinese). | |
9 | SOKOLOVA N, MORRISON A, JACOBSEN K S. High latitude ionospheric gradient observation results from a multi-scale network[J]. Sensors, 2023, 23(4): 2062. |
10 | WANG Z P, LI T L, LI Q, et al. Impact of anomalous ionospheric gradients on GBAS in the low-latitude region of China[J]. GPS Solutions, 2020, 25(1): 2. |
11 | 程建华, 李家祥, 李亮, 等. 多参考地基增强系统电离层梯度完好性监测方法[J]. 中国惯性技术学报, 2021, 29(4): 467-474. |
CHENG J H, LI J X, LI L, et al. Multi reference-based integrity monitoring of ionospheric gradient for ground based augmentation system[J]. Journal of Chinese Inertial Technology, 2021, 29(4): 467-474 (in Chinese). | |
12 | LI W, JIANG Y P. Risk overbounding for ionospheric gradient monitor using geometry-free double differenced carrier phase measurements[J]. GPS Solutions, 2024, 28(3): 128. |
13 | AFFONSO B J, MORAES A, SOUSASANTOS J, et al. Strong ionospheric spatial gradient events induced by signal propagation paths aligned with equatorial plasma bubbles?[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 2868-2879. |
14 | JIANG Y P, SHAO J H. Code-carrier coherence monitoring for dual frequency SBAS[J]. Advances in Space Research, 2024, 74(2): 727-739. |
15 | BUDTHO J, SUPNITHI P, SAITO S. Single-frequency time-step ionospheric delay gradient estimation at low-latitude stations[J]. IEEE Access, 2020, 8: 201516-201526. |
16 | PATEL J, KHANAFSEH S, PERVAN B. Detecting hazardous spatial gradients at satellite acquisition in GBAS[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(4): 3214-3230. |
17 | SHAHID K, GURFIL P. Carrier phase null space monitor for ionospheric gradient detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 3230-3243. |
18 | WANG Z P, YIN Y, SONG D, et al. Dual smoothing ionospheric gradient monitoring algorithm for dual-frequency BDS GBAS[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3395-3404. |
19 | KHANAFSEH S, PULLEN S, WARBURTON J. Carrier phase ionospheric gradient ground monitor for GBAS with experimental validation[J]. Navigation, 2012, 59(1): 51-60. |
20 | 李家祥, 程建华, 李亮, 等. GBAS对流层异常完好性监测参数研究[J]. 航空学报, 2024, 45(7): 328817. |
LI J X, CHENG J H, LI L, et al. Troposphere anomaly integrity monitoring parameters for GBAS[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 328817 (in Chinese). | |
21 | LI J X, YIN H, CHENG J H, et al. A two-step non-nominal troposphere monitor for GBAS[J]. GPS Solutions, 2023, 27(4): 176. |
22 | LI L, LIU X S, JIA C, et al. Integrity monitoring of carrier phase-based ephemeris fault detection[J]. GPS Solutions, 2020, 24(2): 43. |
23 | 张悦, 王志鹏, 李强. GBAS基准站布设方案设计与评估方法[J]. 北京航空航天大学学报, 2018, 44(12): 2545-2555. |
ZHANG Y, WANG Z P, LI Q. A design and evaluation strategy for GBAS reference station layout scheme[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2545-2555 (in Chinese). | |
24 | JING J, KHANAFSEH S, LANGEL S, et al. Optimal antenna topologies for spatial gradient detection in differential GNSS[J]. Radio Science, 2015, 50(7): 728-743. |
25 | CHENG J H, LI J X, LI L, et al. Carrier phase-based ionospheric gradient monitor under the mixed Gaussian distribution[J]. Remote Sensing, 2020, 12(23): 3915. |
26 | 徐峰, 周心桃, 李德聪, 等. 国外典型航母目标特性探析[J]. 舰船科学技术, 2018, 40(17): 151-157. |
XU F, ZHOU X T, LI D C, et al. Analysis of the target characteristics of foreign typical aircraft carrier[J]. Ship Science and Technology, 2018, 40(17): 151-157 (in Chinese). | |
27 | 喻思琪, 张小红, 郭斐, 等. 卫星导航进近技术进展[J]. 航空学报, 2019, 40(3): 022200. |
YU S Q, ZHANG X H, GUO F, et al. Recent advances in precision approach based on GNSS[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 022200 (in Chinese). | |
28 | 贾春, 赵琳, 李亮, 等. 改正接收机频间偏差的短基线北斗三频紧组合RTK方法[J]. 中国科学: 地球科学, 2020, 50(1): 90-103. |
Jia C, Zhao L, Li L, et al. BDS triple-frequency tightly coupled short-baseline RTK method by calibrating the between-receiver inter-frequency biases[J]. Scientia Sinica Terrae, 2020, 50(1): 90-103 (in Chinese). | |
29 | WANG Y Y, ZHANG Y, XU D J, et al. A deformation measurement algorithm based on adaptive variable parameter multiple model for large ships[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 8504310. |
30 | PETOVELLO M G, O’KEEFE K, LACHAPELLE G, et al. Measuring aircraft carrier flexure in support of autonomous aircraft landings[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 523-535. |
31 | GIORGI G, HENKEL P. Ionospheric bias detection in carrier phase-only ground-based augmentation systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1853-1866. |
/
〈 |
|
〉 |