随着太空探索的深入和空间技术的提高,大型航天器的在轨建造已成为重点研究方向,该类航天器通常以空间大型桁架作为支撑,需要依靠空间机器人完成多种载荷的在轨搬运与装配。由于其桁架结构具有大柔性、低阻尼的特点,空间机器人攀爬抓持桁架时易引发时变动态的桁架结构振动,从而影响载荷搬运的平稳性。为此,针对三分支机器人桁架攀爬中抓持构型优化问题,以“桁架-三分支机器人”复合系统为研究对象开展其接触碰撞特性分析;面向抓持构型构建攀爬平稳性、抓持平衡性和可操作性评价指标;利用多目标优化算法NSGA-II建立以三分支机器人关节角度为决策变量的抓持构型优化模型,得到兼顾接触碰撞激励抑制、任务效率与机器人可操作性的抓持构型优化方法;最后通过对照仿真实验评估了该方法的有效性,为大型航天器桁架攀爬运动的平稳规划提供了分析手段和解决思路。
With the advancement of space exploration and technology, the on-orbit construction of large spacecraft has be-come a key research focus. These spacecraft typically use large space trusses as support structures and rely on space robots to carry out various on-orbit transportation and assembly tasks. Due to the characteristics of the truss structures, which have high flexibility and low damping, vibrations in the truss structure can be easily induced by time-varying dynamics when the space robot climbs and grasps the truss. This can affect the stability of load trans-portation. To address the holding configuration optimization problem for a three-branch-robot climbing a truss, the "truss-three-branch robot" composite system was used as the research object to analyze its contact and collision characteristics. Evaluation metrics for climbing stability, holding balance, and operability were constructed for the holding configuration. The NSGA-II(Non-dominated Sorting Genetic Algorithm-II) multi-objective optimization algo-rithm was used to establish a holding configuration optimization model with the joint angles of the three-branch ro-bot as decision variables. This approach provided an optimized method for holding configuration that balanced con-tact collision excitation suppression, task efficiency, and robot operability. Finally, the effectiveness of this method was evaluated through comparative simulation experiments, offering analytical means and solutions for the smooth planning of truss climbing motions in large spacecraft.
[1]ZHANG Z B, LI X H, LI Y Y, et al.Modularity,reconfigurability,and autonomy for the future in spacecraft: A review[J].Chinese Journal of Aeronautics, 2023, 36(7):282-315
[2]SHE Y C, LI S, LIU Y F, et al.In-orbit robotic assembly mission design and planning to construct a large space telescope[J].Journal of Astronomical Telescopes, Instruments, and Systems, 2020, 6(1):017002-017002
[3]LI D L, ZHONG L, ZHU W, et al.A Survey of Space Robotic Technologies for On-Orbit Assembly[J].Space: Science & Technology, 2022, 2022(4):1-13
[4]侯新宇, 张帆, 黄攀峰, 等.空间大型桁架天线姿态与振动一体化控制[J].航空学报, 2023, 44(S1):69-76
[5] KOPYLOV V, SHARDYKO I, TITOV V.Robotization of In-Orbit Large-scale Structure Assembly[C]. //34th International DAAAM Symposium on Intelligent Manufacturing and Automation 2023: Vienna, Austria, 26-27 October 2023. 2023: 111-120.
[6]王明明, 罗建军, 袁建平, 等.空间在轨装配技术综述[J].航空学报, 2021, 42(01):47-61
[7]YANG S L, MENG D S, JIANG P, et al.Kinematic analysis and gait planning of a three-branch relative robot for on-orbit assembly[C]//2021 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2021: 1884-1889.
[8]YANG S L, WU Z G, MENG D S, et al.Coupled dynamics and gait optimization of the spatial structure of robot walking assembly[J].Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7):1548-1558
[9]YOSHIDA K, SASHIDA N.Modeling of impact dynamics and impulse minimization for space robots[C]// 1993 IEEE International Conference on Intelligent Robots and Systems, 1993: 2064-2069.
[10]LIN Z C, PATEL R V, BALAFOUTIS C A.Impact reduction for redundant manipulators using augmented impedance control[J].Journal of Robotic Systems, 1995, 12(5):301-313
[11]华卫江, 章定国.柔性机器人系统碰撞动力学建模[J].机械工程学报, 2008, 43(12):222-228
[12]ZHENG Y F, HEMAMI H.Mathematical modeling of a robot collision with its environment[J].Journal of Robotic Systems, 1985, 2(3):289-307
[13]陈钢, 贾庆轩, 孙汉旭, 等.空间机器人目标捕获过程中碰撞运动分析[J].机器人, 2010, 2010(03):146-152
[14]朱永杰.机器人碰撞动力学分析与轨迹优化[D].天津工业大学, 2020.
[15]XU R N, LUO J J, WANG M M.Optimal grasping pose for dual-arm space robot cooperative manipulation based on global manipulability[J][J].Acta Astronautica, 2021, 183:300-309
[16]孟光, 韩亮亮, 张崇峰.空间机器人研究进展及技术挑战[J].航空学报, 2021, 42(01):8-32
[17]YANG G L, CHEN I M.Task-based optimization of modular robot configurations: minimized degree-of-freedom approach[J].Mechanism and Machine Theory, 2000, 35(4):517-540
[18]ARTIGAS J, BALACHANDRAN R, RIECKE C, et al.Kontur-2: force-feedback teleoperation from the international space station[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016: 1166-1173.
[19]Li Q, ZHAO J.A universal approach for configuration synthesis of reconfigurable robots based on fault tolerant indices[J].The Industrial Robot, 2012, 39(1):69-78
[20]MENG D S, WANG X Q, LIANG B.Safe configuration optimization of flexible joint manipulator based on equivalent model of head collision[J].robot, 2017, 39(4):523-531
[21]郭闻昊, 王天舒.空间机器人抓捕目标星碰撞前构型优化[J].宇航学报, 2015, 36(04):390-396
[22]赵智远, 徐振邦, 何俊培, 等.基于工作空间分析的自由度超冗余串联机械臂构型优化[J].机械工程学报, 2019, 55(21):51-63
[23]ZHANG B, LIANG B, WANG X Q, et al.Manipulability measure of dual-arm space robot and its application to design an optimal configuration[J]. Acta Astronautica, 2016, 128: 322-329.[J][J].Acta Astronautica, 2016, 128:322-329
[24]AGUSTIAN I, DARATHA N, FAURINA R, et al.Robot manipulator control with inverse kinematics PD-pseudoinverse Jacobian and forward kinematics Denavit Hartenberg[J].arXiv preprint arXiv:2103.10461, 2021, 21:8-18
[25]金国光, 武光涛, 畅博彦, 等.机械臂接触碰撞动力学分析[J].农业机械学报, 2016, 47(11):369-375