机场净空区飞鸟与无人机多源探测技术综述
收稿日期: 2024-09-23
修回日期: 2024-10-14
录用日期: 2024-11-22
网络出版日期: 2024-11-29
基金资助
国家重点研发计划(2023YFB2604103);国家自然科学基金(U2433211);中国民航科学技术研究院基本科研业务费项目(x242060302216)
Review on multi-source detection technologies for birds and drones in airport clearance area
Received date: 2024-09-23
Revised date: 2024-10-14
Accepted date: 2024-11-22
Online published: 2024-11-29
Supported by
National Key Research and Development Program of China(2023YFB2604103);National Natural Science Foundation of China(U2433211);Basic Research Project of CAST(x242060302216)
陈唯实 , 牛红闯 , 王鑫 , 万健 , 卢贤锋 , 张洁 , 王青斌 . 机场净空区飞鸟与无人机多源探测技术综述[J]. 航空学报, 2025 , 46(10) : 31251 -031251 . DOI: 10.7527/S1000-6893.2024.31251
Flying birds and drones are the two major sources of hazards threatening the airport clearance area. The mainstream detection technologies for the targets of flying birds and non-cooperative Unmanned Aerial Vehicles (UAVs) are reviewed, such as detection via radar, optoelectronics, radio, and acoustics, and the latest research progress on the typical systems and target recognition and classification algorithms at home a nd abroad is also discussed. In terms of target classification models, deep learning networks have emerged as a highly regarded research direction. Based on the analysis of the characteristics of various sensor data, a multi-source fusion detection scheme for birds and drones in the airport clearance area is proposed, which is mainly based on radar data, and is supplemented by several other types of data. Multi-source fusion detection and recognition of flying birds and UAV targets is achieved through hierarchical fusion on data level, feature level, and decision level.
1 | 陈唯实, 黄毅峰, 陈小龙, 等. 机场探鸟雷达技术发展与应用综述[J]. 航空学报, 2022, 43(1): 024758. |
CHEN W S, HUANG Y F, CHEN X L, et al. Development and applications of airport avian radar: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 024758 (in Chinese). | |
2 | 陈小龙, 陈唯实, 饶云华, 等. 飞鸟与无人机目标雷达探测与识别技术进展与展望[J]. 雷达学报, 2020, 9(5): 803-827. |
CHEN X L, CHEN W S, RAO Y H, et al. Progress and prospects of radar target detection and recognition technology for flying birds and unmanned aerial vehicles[J]. Journal of Radars, 2020, 9(5): 803-827 (in Chinese). | |
3 | CHEN W S, CHEN X L, LIU J, et al. Detection and recognition of UA targets with multiple sensors[J]. The Aeronautical Journal, 2023, 127(1308): 167-192. |
4 | CHEN W S, HUANG Y F, LU X F, et al. Review on critical technology development of avian radar system[J]. Aircraft Engineering and Aerospace Technology, 2022, 94(3): 445-457. |
5 | 陈唯实, 黄毅峰, 卢贤锋. 多传感器融合的无人机探测技术应用综述[J]. 现代雷达, 2020, 42(6): 15-29. |
CHEN W S, HUANG Y F, LU X F. Survey on application of multi-sensor fusion in UAV detection technology[J]. Modern Radar, 2020, 42(6): 15-29 (in Chinese). | |
6 | 陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[J]. 科技导报, 2017, 35(11): 30-38. |
CHEN X L, GUAN J, HUANG Y, et al. Radar low-observable target detection?[J]. Science & Technology Review, 2017, 35(11): 30-38 (in Chinese). | |
7 | DETECT. MERLIN bird and bat tracking radar technologies[EB/OL]. (2024-01-30)[2024-07-31]. . |
8 | WEBER P, NOHARA T J, GAUTHREAUX S Jr. Affordable, real-time, 3-D avian radar networks for centralized North American bird advisory systems?[C]?∥Bird Strike Committee Proceedings. Vancouver: DigitalCommons@University of Nebraska-Lincoln, 2005. |
9 | HOFFMANN F, RITCHIE M, FIORANELLI F, et al. Micro-Doppler based detection and tracking of UAVs with multistatic radar[C]∥2016 IEEE Radar Conference (RadarConf). Piscataway: IEEE Press, 2016. |
10 | 陈唯实, 万健, 李敬. 基于机场探鸟雷达数据的鸟击风险评估[J]. 北京航空航天大学学报, 2013, 39(11): 1431-1436. |
CHEN W S, WAN J, LI J. Bird strike risk assessment with airport avian radar data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(11): 1431-1436 (in Chinese). | |
11 | CHEN W S. Spatial and temporal features selection for low-altitude target detection[J]. Aerospace Science and Technology, 2015, 40: 171-180. |
12 | 宋强, 彭翔宇, 黄仕林, 等. 基于序贯特征提取的无人机与飞鸟目标分类[J]. 信号处理, 2024, 40(5): 839-852. |
SONG Q, PENG X Y, HUANG S L, et al. Classification of UAVs and birds using sequential feature extraction[J]. Journal of Signal Processing, 2024, 40(5): 839-852 (in Chinese). | |
13 | 中国电子学会. 机场探鸟雷达系统技术要求: T/ [S]. 北京: 中国标准出版社, 2023. |
Chinese Institute of Electronics. Technical requirements for airport avian radar system: T/ ?[S]. Beijing: Standards Press of China, 2023 (in Chinese). | |
14 | 中国电子学会. 机场净空区非合作无人机目标探测系统通用技术要求: T/ [S]. 北京: 中国标准出版社, 2024. |
Chinese Institute of Electronics. General technical requirements for non-cooperative unmanned aerial vehicle target detection system in airport clearance zone : T/ [S]. Beijing: Standards Press of China, 2024 (in Chinese). | |
15 | ACCIPITER. Aviation safety & security[EB/OL]. (2024-05-30)[2024-07-31]. . |
16 | JAHANGIR M, BAKER C J, OSWALD G A. Doppler characteristics of micro-drones with L-Band multibeam staring radar[C]∥2017 IEEE Radar Conference (RadarConf). Piscataway: IEEE Press, 2017. |
17 | 万显荣, 武冰倩, 易建新, 等. 面向外辐射源雷达发射站定位的合作无人机航迹规划方法研究[J]. 电子与信息学报, 2024, 46(5): 2057-2064. |
WAN X R, WU B Q, YI J X, et al. UAV path planning method for passive radar transmitter localization[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2057-2064 (in Chinese). | |
18 | 吴志东, 万显荣, 易建新. 外辐射源雷达探鸟实验初步研究[J]. 信息工程大学学报, 2022, 23(3): 296-301. |
WU Z D, WAN X R, YI J X. Bird detection based on passive radar[J]. Journal of Information Engineering University, 2022, 23(3): 296-301 (in Chinese). | |
19 | 杨超斌, 高全中, 陈传飞, 等. 5G-Advanced技术及应用展望[J]. 信息通信技术, 2024, 18(1): 25-31. |
YANG C B, GAO Q Z, CHEN C F, et al. 5G-advanced technologies and applications prospect[J]. Information and Communications Technologies, 2024, 18(1): 25-31 (in Chinese). | |
20 | 知乎. 中国移动联合中兴通讯完成5G-A通感一体低空场景能力验证[EB/OL]. (2024-04-12)[2024-07-31]. . |
Zhihu. China Mobile and ZTE have completed the verification of 5G-A sensing integrated low altitude scenario capability?[EB/OL]. ?(2024-04-12)?[2024-07-31]. ?. | |
21 | CHEN V C. The Micro-doppler effect in radar[M]. Boston: Artech House, 2011: 1-5. |
22 | RITCHIE M, FIORANELLI F, GRIFFITHS H, et al. Micro-drone RCS analysis[C]∥2015 IEEE Radar Conference. Piscataway: IEEE Press, 2015: 452-456. |
23 | RAHMAN S, ROBERTSON D A. Radar micro-Doppler signatures of drones and birds at K-band and W-band[J]. Scientific Reports, 2018, 8(1): 17396. |
24 | MOLCHANOV P, HARMANNY R I A, DE WIT J J M, et al. Classification of small UAVs and birds by micro-Doppler signatures[J]. International Journal of Microwave and Wireless Technologies, 2014, 6(3-4): 435-444. |
25 | OH B S, GUO X, WAN F Y, et al. Micro-Doppler mini-UAV classification using empirical-mode decomposition features[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2): 227-231. |
26 | MA X Y, OH B S, SUN L, et al. EMD-based entropy features for micro-Doppler mini-UAV classification[C]∥2018 24th International Conference on Pattern Recognition (ICPR). Piscataway: IEEE Press, 2018. |
27 | FUHRMANN L, BIALLAWONS O, KLARE J, et al. Micro-Doppler analysis and classification of UAVs at Ka band?[C]?∥2017 18th International Radar Symposium (IRS). Piscataway: IEEE Press, 2017. |
28 | REN J F, JIANG X D. Regularized 2-D complex-log spectral analysis and subspace reliability analysis of micro-Doppler signature for UAV detection[J]. Pattern Recognition, 2017, 69: 225-237. |
29 | FIORANELLI F, RITCHIE M, GRIFFITHS H, et al. Classification of loaded/unloaded micro-drones using multistatic radar[J]. Electronics Letters, 2015, 51(22): 1813-1815. |
30 | HOFFMANN F, RITCHIE M, FIORANELLI F, et al. Micro-Doppler based detection and tracking of UAVs with multistatic radar[C]∥2016 IEEE Radar Conference (RadarConf). Piscataway: IEEE Press, 2016. |
31 | ZHANG P F, YANG L, CHEN G, et al. Classification of drones based on micro-Doppler signatures with dual-band radar sensors[C]∥2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL). Piscataway: IEEE Press, 2017. |
32 | 章鹏飞, 李刚, 霍超颖, 等. 基于双雷达微动特征融合的无人机分类识别[J]. 雷达学报, 2018, 7(5): 557-564. |
ZHANG P F, LI G, HUO C Y, et al. Classification of drones based on micro-Doppler radar signatures using dual radar sensors[J]. Journal of Radars, 2018, 7(5): 557-564 (in Chinese). | |
33 | 刘玉琪, 易建新, 万显荣, 等. 数字电视外辐射源雷达多旋翼无人机微多普勒效应实验研究[J]. 雷达学报, 2018, 7(5): 585-592. |
LIU Y Q, YI J X, WAN X R, et al. Experimental research on micro-Doppler effect of multi-rotor drone with digital television based passive radar[J]. Journal of Radars, 2018, 7(5): 585-592 (in Chinese). | |
34 | 易建新, 万显荣, 方亮, 等. 中国移动多媒体广播外辐射源雷达相干积累的非均匀采样实现[J]. 电子与信息学报, 2012, 34(11): 2648-2653. |
YI J X, WAN X R, FANG L, et al. Coherent integration implementation for China mobile multimedia broadcasting based passive radar with nonuniform sampling[J]. Journal of Electronics & Information Technology, 2012, 34(11): 2648-2653 (in Chinese). | |
35 | CHEN W S, LIU J, LI J. Classification of UAV and bird target in low-altitude airspace with surveillance radar data?[J]. The Aeronautical Journal, 2019, 123(1260): 191-211. |
36 | MESSINA M, PINELLI G. Classification of drones with a surveillance radar signal[C]?∥Computer Vision Systems. Cham: Springer International Publishing, 2019. |
37 | TORVIK B, OLSEN K E, GRIFFITHS H. Classification of birds and UAVs based on radar polarimetry[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(9): 1305-1309. |
38 | 徐世友, 戴婷, 陈曾平. 基于多维特征的全息雷达“低慢小”目标识别[J]. 现代雷达, 2022, 44(11): 1-9. |
XU S Y, DAI T, CHEN Z P. LSS target recognition in holographic radar based on multi-dimensional features[J]. Modern Radar, 2022, 44(11): 1-9 (in Chinese). | |
39 | 邓振华, 陈小龙, 薛伟, 等. 海空背景下低慢小目标泛探雷达多域多维特征建模与分析[J]. 信号处理, 2024, 40(5): 801-814. |
DENG Z H, CHEN X L, XUE W, et al. Multi-domain and multi-dimensional feature modeling and analysis of low, slow, and small targets via ubiquitous radar under sea and air background[J]. Journal of Signal Processing, 2024, 40(5): 801-814 (in Chinese). | |
40 | KIM B K, KANG H S, PARK S O. Drone classification using convolutional neural networks with merged Doppler images?[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(1): 38-42. |
41 | MENDIS G J, RANDENY T, WEI J, et al. Deep learning based Doppler radar for micro UAS detection and classification[C]∥MILCOM 2016-2016 IEEE Military Communications Conference. Piscataway: IEEE Press, 2016. |
42 | SAMARAS S, MAGOULIANITIS V, DIMOU A, et al. UAV classification with deep learning using surveillance radar data[C]∥The 12th International Conference on Computer Vision Systems (ICVS 2019). Cham: Springer International Publishing, 2019. |
43 | REGEV N, YOFFE I, WULICH D. Classification of single and multi propelled miniature drones using multilayer perceptron artificial neural network[C]?∥International Conference on Radar Systems (Radar 2017). London: IET, 2017. |
44 | HABERMANN D, DRANKA E, CACERES Y, et al. Drones and helicopters classification using point clouds features from radar[C]?∥2018 IEEE Radar Conference (RadarConf18). Piscataway: IEEE Press, 2018. |
45 | MOHAJERIN N, HISTON J, DIZAJI R, et al. Feature extraction and radar track classification for detecting UAVs in civillian airspace[C]?∥2014 IEEE Radar Conference. Piscataway: IEEE Press, 2014. |
46 | 陈小龙, 袁旺, 杜晓林, 等. 多波段FMCW雷达低慢小探测数据集(LSS-FMCWR-1.0)及高分辨微动特征提取方法[J]. 雷达学报, 2024, 13(3): 539-553. |
CHEN X L, YUAN W, DU X L, et al. Multiband FMCW radar LSS-target detection dataset(LSS-FMCWR-1.0)and high-resolution micromotion feature extraction method[J]. Journal of Radars, 2024, 13(3): 539-553 (in Chinese). | |
47 | 傲英创视. 鸟情监测与防入侵系统[EB/OL]. (2024-01-01)[2024-08-08]. . |
ALLIN TECH. Bird Detection & Deterrence[EB/OL]. (2024-01-01)[2024-08-08]. (in Chinese). | |
48 | IDENTIFLIGHT. IDENTIFLIGHT将在乌兹别克斯坦MASDAR风力发电场防止鸟类野生动物与风力涡轮机碰撞[EB/OL]. (2022-12-16)[2024-08-08]. . |
IDENTIFLIGHT. IDENTIFLIGHT will prevent bird wildlife from colliding with wind turbines at the MASDAR wind farm in Uzbekistan[EB/OL]. (2022-12-16)[2024-08-08]. (in Chinese). | |
49 | VOLACOM. Automatic bird detection and deterrence solutions driven by technology and innovation[EB/OL]. (2024-01-01)[2024-08-08]. . |
50 | 陈唯实, 牛红闯, 万健, 等. 基于光电技术的机场鸟情观测[J]. 中国民用航空, 2024, 417: 29-32. |
CHEN W S, NIU H C, WAN J, et al. Airport bird observation based on optoelectronic technology[J]. China Civil Aviation, 2024, 417: 29-32 (in Chinese). | |
51 | YOSHIHASHI R, KAWAKAMI R, IIDA M, et al. Bird detection and species classification with time-lapse images around a wind farm: Dataset construction and evaluation[J]. Wind Energy, 2017, 20(12): 1983-1995. |
52 | KABRA K, XIONG A, LI W, et al. Deep object detection for waterbird monitoring using aerial imagery[C]∥2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA). Piscataway: IEEE Press, 2022. |
53 | LIU S L, LI Y L, QU J Y, et al. Airport UAV and birds detection based on deformable DETR?[J]. Journal of Physics: Conference Series, 2022, 2253(1): 012024. |
54 | HUO D, KASTNER M A, LIU T W, et al. Small object detection for birds with swin transformer[C]∥2023 18th International Conference on Machine Vision and Applications (MVA). Piscataway: IEEE Press, 2023. |
55 | LI C, ZHANG B C, HU H W, et al. Enhanced bird detection from low-resolution aerial image using deep neural networks?[J]. Neural Processing Letters, 2019, 49(3): 1021-1039. |
56 | FAN J C, LIU X X, WANG X Z, et al. Multi-background island bird detection based on faster R-CNN[J]. Cybernetics and Systems, 2021, 52(1): 26-35. |
57 | ZOU C, LIANG Y-Q. Bird detection on transmission lines based on DC-YOLO model?[C]?∥Intelligent Information Processing X. Cham: Springer International Publishing, 2020. |
58 | WU J H, XU W, HE J F, et al. YOLO for penguin detection and counting based on remote sensing images[J]. Remote Sensing, 2023, 15(10): 2598. |
59 | 王洪昌, 夏舫, 张渊媛, 等. 基于深度学习算法的鸟类及其栖息地识别: 以北京翠湖国家城市湿地公园为例[J]. 生态学杂志, 2024, 43(7): 2231-2238. |
WANG H C, XIA F, ZHANG Y Y, et al. Bird and habitat recognition based on deep learning algorithm: A case study of Beijing Cuihu National Urban Wetland Park[J]. Chinese Journal of Ecology, 2024, 43(7): 2231-2238 (in Chinese). | |
60 | SAQIB M, KHAN S D, SHARMA N, et al. A study on detecting drones using deep convolutional neural networks[C]?∥2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Piscataway: IEEE Press, 2017. |
61 | CRAYE C, ARDJOUNE S. Spatio-temporal semantic segmentation for drone detection?[C]?∥2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Piscataway: IEEE Press, 2019. |
62 | MAGOULIANITIS V, ATALOGLOU D, DIMOU A, et al. Does deep super-resolution enhance UAV detection?[C]∥2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Piscataway: IEEE Press, 2019. |
63 | AKER C, KALKAN S. Using deep networks for drone detection[C]∥2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Piscataway: IEEE Press, 2017. |
64 | ROZANTSEV A, LEPETIT V, FUA P. Detecting flying objects using a single moving camera[J]. IEEE transactions on pattern analysis and machine intelligence, 39(5):879-892. |
65 | 蒋兆军, 成孝刚, 彭雅琴, 等. 基于深度学习的无人机识别算法研究[J]. 电子技术应用, 2017, 43(7): 84-87. |
JIANG Z J, CHENG X G, PENG Y Q, et al. A novel UAV recognition algorithm based on deep learning approach[J]. Application of Electronic Technique, 2017, 43(7): 84-87 (in Chinese). | |
66 | 虞晓霞, 刘智, 耿振野, 等. 一种基于深度学习的禁飞区无人机目标识别方法[J]. 长春理工大学学报(自然科学版), 2018, 41(3): 95-101. |
YU X X, LIU Z, GENG Z Y, et al. A UAV target recognition method for No flying zone based on deep learning[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2018, 41(3): 95-101 (in Chinese). | |
67 | 马旗. 基于深度学习的低空无人机目标图像检测识别算法研究[D]. 长沙: 国防科技大学, 2019. |
MA Q. Research on target image detection and recognition algorithm of low-altitude UAV based on deep learning[D]. Changsha: National University of Defense Technology, 2019 (in Chinese). | |
68 | 谢威宇. 基于深度学习神经网络的无人机与飞鸟识别研究[D]. 广汉: 中国民用航空飞行学院, 2024. |
XIE W Y. Research on UAV and bird recognition based on deep learning neural network[D]. Sichuan: Civil Aviation Flight University of China, 2024 (in Chinese). | |
69 | 梁晓, 李俊. 基于改进YOLOv7的红外无人机目标检测方法[J]. 电光与控制, 2023, 30(12): 38-43, 92. |
LIANG X, LI J. An infrared UAV target detection method based on improved YOLOv7[J]. Electronics Optics & Control, 2023, 30(12): 38-43, 92 (in Chinese). | |
70 | 陈海永, 刘登斌, 晏行伟. 基于IDOU-YOLO的红外图像无人机目标检测算法[J]. 应用光学, 2024, 45(4): 723-731. |
CHEN H Y, LIU D B, YAN X W. Infrared image UAV target detection algorithm based on IDOU-YOLO?[J]. Journal of Applied Optics, 2024, 45(4): 723-731 (in Chinese). | |
71 | WANG W H, WANG P Z, NIU Z D. A real-time detection algorithm for unmanned aerial vehicle target in infrared search system[C]∥2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). Piscataway: IEEE Press, 2018. |
72 | PANG D D, SHAN T, MA P G, et al. A novel spatiotemporal saliency method for low-altitude slow small infrared target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 7000705. |
73 | FANG H Z, DING L, WANG L M, et al. Infrared small UAV target detection based on depthwise separable residual dense network and multiscale feature fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5019120. |
74 | 夏铭江. 复杂动态场景下红外无人机目标检测方法研究[D]. 西安: 西安电子科技大学, 2022. |
XIA M J. Research on target detection method of infrared UAV in complex dynamic scene[D]. Xi’an: Xidian University, 2022 (in Chinese). | |
75 | 欧洪璇. 基于深度学习的红外无人机目标监视技术研究[D]. 西安: 西安电子科技大学, 2022. |
OU H X. Research on target monitoring technology of infrared UAV based on deep learning[D]. Xi’an: Xidian University, 2022 (in Chinese). | |
76 | XU Z J, SU J J, HUANG K. A-RetinaNet: A novel RetinaNet with an asymmetric attention fusion mechanism for dim and small drone detection in infrared images[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 6630-6651. |
77 | MISBAH M, KHAN M U, YANG Z H, et al. TF-net: Deep learning empowered tiny feature network for night-time UAV detection?[C]?∥Wireless and Satellite Systems. Cham: Springer Nature Switzerland, 2023. |
78 | WAH C, BRANSON S, WELINDER P, et al. The caltech-UCSD birds-200-2011 dataset[EB/OL]. (2011-12-30)[2024-08-08]. . |
79 | BERG T, LIU J X, LEE S W, et al. Birdsnap: Large-scale fine-grained visual categorization of birds?[C]?∥2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014. |
80 | VAN HORN G, BRANSON S, FARRELL R, et al. Building a bird recognition app and large scale dataset with citizen scientists: The fine print in fine-grained dataset collection?[C]?∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2015. |
81 | JIANG N, WANG K, PENG X, et al. Anti-UAV: A large multi-modal benchmark for UAV tracking?[DB/OL]. arXiv preprint: 2101. 08466, 2021. |
82 | COLUCCIA A, FASCISTA A, SCHUMANN A, et al. Drone-vs-bird detection challenge at IEEE AVSS2019[C]?∥2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Piscataway: IEEE Press, 2019. |
83 | KONDO Y, UKITA N, YAMAGUCHI T, et al. MVA2023 small object detection challenge for spotting birds: dataset, methods, and results[C]?∥2023 18th International Conference on Machine Vision and Applications (MVA). Piscataway: IEEE Press, 2023. |
84 | WANG Y, CHEN Y, CHOI J, et al. MCL drone dataset[EB/OL]. (2019-12-30)[2024-08-08]. . |
85 | 罗德与施瓦茨科技有限公司. 无人机自动识别、定位和压制系统(一)[J]. 中国无线电, 2016(8): 72-73. |
ROHDE & SCHWARZ.Automatic identification, positioning and suppression system for UAV (Part 1)?[J]. China Radio, 2016(8): 72-73 (in Chinese). | |
86 | 罗德与施瓦茨科技有限公司. 无人机自动识别、定位和压制系统(二)[J]. 中国无线电, 2016(8): 72-73. |
ROHDE & SCHWARZ.Automatic identification, positioning and suppression system for UAV (Part 2)?[J]. China Radio, 2016(9): 71-72 (in Chinese). | |
87 | 罗德与施瓦茨科技有限公司. 无人机自动识别、定位和压制系统(三)[J]. 中国无线电, 2016(10): 72-73. |
ROHDE & SCHWARZ.Automatic identification, positioning and suppression system for UAV (Part 3)?[J]. China Radio, 2016(10): 72-73 (in Chinese). | |
88 | 朱艳巍, 屠丹, 李新利. 无线电监测测向设施现场测试系统研究[J]. 中国无线电, 2020(1): 38-41. |
ZHU Y W, TU D, LI X L. Research on the field test system of radio monitoring and direction finding facilities[J]. China Radio, 2020(1): 38-41 (in Chinese). | |
89 | 王智芳, 周晓芳, 徐从宇. 基于无线电技术的民用无人机侦测与管控方法在监所环境的探究[J]. 计算机科学与应用, 2018, 8(9): 1407-1415. |
WANG Z F, ZHOU X F, XU C Y. Research on detection and control method of civilian UAV based on radio technology in prison environment?[J]. Computer Science and Application, 2018, 8(9): 1407-1415 (in Chinese). | |
90 | 罗德与施瓦茨科技有限公司. ARDRONIS反无人机解决方案?[EB/OL]. (2024-01-30)?[2024-08-08]. . |
ROHDE & SCHWARZ. RDRONIS anti drone solution[EB/OL]. (2024-01-30)[2024-08-08]. (in Chinese). | |
91 | IZT. IZT 5509 radio direction finder[EB/OL]. (2024-07-30)[2024-08-08]. . |
92 | 安则科技. 全频段侦测测向[EB/OL]. (2024-07-30) [2024-08-08]. . |
ANZE. Full frequency detection and direction finding[EB/OL]. (2024-07-30)[2024-08-08]. . | |
93 | 上海特金. TDOA网格化无线电监测定位系统[EB/OL]. (2024-07-30)[2024-08-08]. . |
TERJIN. TDOA grid based radio monitoring and positioning system?[EB/OL]. (2024-07-30)?[2024-08-08]. (in Chinese). | |
94 | 周鑫, 何晓新, 郑昌文. 基于图像深度学习的无线电信号识别[J]. 通信学报, 2019, 40(7): 114-125. |
ZHOU X, HE X X, ZHENG C W. Radio signal recognition based on image deep learning[J]. Journal on Communications, 2019, 40(7): 114-125 (in Chinese). | |
95 | 俞宁宁, 毛盛健, 周成伟, 等. DroneRFa: 用于侦测低空无人机的大规模无人机射频信号数据集[J]. 电子与信息学报, 2024, 46(4): 1147-1156. |
YU N N, MAO S J, ZHOU C W, et al. DroneRFa: A large-scale dataset of drone radio frequency signals for detecting low-altitude drones?[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1147-1156 (in Chinese). | |
96 | LOPATKA J, PEDZISZ M. Automatic modulation classification using statistical moments and a fuzzy classifier[C]?∥WCC 2000-ICSP 2000.2000 5th International Conference on Signal Processing Proceedings. 16th World Computer Congress 2000. Piscataway: IEEE Press, 2000. |
97 | WONG M L D, NANDI A K. Automatic digital modulation recognition using spectral and statistical features with multi-layer perceptrons?[C]?∥Proceedings of the Sixth International Symposium on Signal Processing and Its Applications. Piscataway: IEEE Press, 2002. |
98 | ARULAMPALAM G, RAMAKONAR V, BOUZERDOUM A, et al. Classification of digital modulation schemes using neural networks?[C]?∥ISSPA’99. Proceedings of the Fifth International Symposium on Signal Processing and Its Applications. Piscataway: IEEE Press, 1999. |
99 | TRIANTAFYLLAKIS K, SURLIGAS M, VARDAKIS G, et al. Phasma: An automatic modulation classification system based on Random Forest[C]∥2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). Piscataway: IEEE Press, 2017. |
100 | O’SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]∥Engineering Applications of Neural Networks. Cham: Springer International Publishing, 2016. |
101 | KARRA K, KUZDEBA S, PETERSEN J. Modulation recognition using hierarchical deep neural networks[C]∥2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). Piscataway: IEEE Press, 2017. |
102 | WEST N E, O’SHEA T. Deep architectures for modulation recognition?[C]?∥2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). Piscataway: IEEE Press, 2017. |
103 | KUMAR ARUMUGAM K S, KADAMPOT I A, TAHMASBI M, et al. Modulation recognition using side information and hybrid learning[C]∥2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). Piscataway: IEEE Press, 2017. |
104 | SCHMIDT M, BLOCK D, MEIER U. Wireless interference identification with convolutional neural networks[C]∥2017 IEEE 15th International Conference on Industrial Informatics (INDIN). Piscataway: IEEE Press, 2017. |
105 | ZHANG M, DIAO M, GUO L M. Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5: 11074-11082. |
106 | ALLAHHAM M S, AL-SA’D M F, AL-ALI A, et al. DroneRF dataset: A dataset of drones for RF-based detection, classification and identification?[J]. Data in Brief, 2019, 26: 104313. |
107 | WILDLIFE ACOUSTICS. Song meter SM4[EB/OL]. (2024-07-30)[2024-08-12]. . |
108 | 吴科毅, 阮文达, 周棣锋, 等. 基于音节聚类分析的被动声学监测技术及其在鸟类监测中的应用[J]. 生物多样性, 2023, 31(1): 126-136. |
WU K Y, RUAN W D, ZHOU D F, et al. Syllable clustering analysis-based passive acoustic monitoring technology and its application in bird monitoring[J]. Biodiversity Science, 2023, 31(1): 126-136 (in Chinese). | |
109 | 王一宇, 夏舫, 刘松, 等. 基于深度学习的鸟声识别技术研究: 以北京翠湖国家城市湿地公园为例[J]. 园林, 2024, 41(4): 19-26. |
WANG Y Y, XIA F, LIU S, et al. Research on bird sound recognition technology based on deep learning: Taking Beijing Cuihu national urban wetland park as an example[J]. Landscape Architecture Academic Journal, 2024, 41(4): 19-26 (in Chinese). | |
110 | MICROFLOWN AVISA. Skysentry-counter UAS[EB/OL]. ?(2024-06-30)?[2024-08-08]. ?. |
111 | LEE H, LARGMAN Y, PHAM P, et al. Unsupervised feature learning for audio classification using convolutional deep belief networks[C]∥Proceedings of the 23rd International Conference on Neural Information Processing Systems. New York: ACM, 2009. |
112 | PICZAK K J. Environmental sound classification with convolutional neural networks[C]∥2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP). Piscataway: IEEE Press, 2015. |
113 | LANE N D, GEORGIEV P, QENDRO L. DeepEar: Robust smartphone audio sensing in unconstrained acoustic environments using deep learning?[C]?∥Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York: ACM, 2015. |
114 | WILKINSON B, ELLISON C, NYKAZA E T, et al. Deep learning for unsupervised separation of environmental noise sources[J]. The Journal of the Acoustical Society of America, 2017, 141(5s): 3964. |
115 | PARK S, SHIN S, KIM Y, et al. Combination of radar and audio sensors for identification of rotor-type Unmanned Aerial Vehicles (UAVs)?[C]?∥2015 IEEE SENSORS. Piscataway: IEEE Press, 2015. |
116 | LIU H, WEI Z Q, CHEN Y T, et al. Drone detection based on an audio-assisted camera array[C]∥2017 IEEE Third International Conference on Multimedia Big Data (BigMM). Piscataway: IEEE Press, 2017. |
117 | KIM J, PARK C, AHN J, et al. Real-time UAV sound detection and analysis system[C]?∥2017 IEEE Sensors Applications Symposium (SAS). Piscataway: IEEE Press, 2017. |
118 | KIM J, KIM D. Neural network based real-time UAV detection and analysis by sound[J]. Journal of Advanced Information Technology and Convergence, 2018, 8(1). |
119 | JEON S, SHIN J W, LEE Y J, et al. Empirical study of drone sound detection in real-life environment with deep neural networks?[C]?∥2017 25th European Signal Processing Conference (EUSIPCO). Piscataway: IEEE Press, 2017. |
120 | 马春艺, 张君, 鲍明, 等. 声场空频特征非参数融合无人机声学探测[J]. 信号处理, 2019, 35(9): 1590-1598. |
MA C Y, ZHANG J, BAO M, et al. UAV acoustic detection based on non-parametric fusion of spatial-frequency characteristics of sound field[J]. Journal of Signal Processing, 2019, 35(9): 1590-1598 (in Chinese). | |
121 | 王立宏. 小型旋翼无人机声探测识别方法研究[D]. 西安: 西安电子科技大学, 2019. |
WANG L H. Research on acoustic detection and identification method of small rotary-wing UAV[D]. Xi’an: Xidian University, 2019 (in Chinese). | |
122 | HüPPOP O, WINKEL W. Climate change and timing of spring migration in the long-distance migrant Ficedula hypoleuca in central Europe: The role of spatially different temperature changes along migration routes[J]. Journal of Ornithology, 2006, 147(2): 344-353. |
123 | PILLAY R, FLETCHER R J, SIEVING K E, et al. Bioacoustic monitoring reveals shifts in breeding songbird populations and singing behaviour with selective logging in tropical forests[J]. Journal of Applied Ecology, 2019, 56(11): 2482-2492. |
124 | BILGER H T, VERTOSICK E, VICKERS A, et al. Higher-order musical temporal structure in bird song[J]. Frontiers in Psychology, 2021, 12: 629456. |
125 | XENO-CANTO. Sharing wildlife sounds from around the world[EB/OL]. (2024-04-30)[2024-08-12]. . |
126 | CORNELL LAB. Machine learning at macaulay library (2024-05-20)?[EB/OL]. [2024-08-12]. . |
127 | YUAN S H, YANG Y Z, NGUYEN T H, et al. MMAUD: A comprehensive multi-modal anti-uav dataset for modern miniature drone threats[EB/OL]. (2024-05-30)[2024-08-10]. . |
128 | HENGY S, LAURENZIS M, SCHERTZER S, et al. Multimodal UAV detection: Study of various intrusion scenarios?[C]?∥Electro-Optical Remote Sensing Ⅺ. SPIE, 2017. |
129 | LAURENZIS M, HENGY S, HAMMER M, et al. An adaptive sensing approach for the detection of small UAV: First investigation of static sensor network and moving sensor platform?[C]?∥Signal Processing, Sensor/Information Fusion, and Target Recognition XXVII. SPIE, 2018. |
130 | 崔莹莹, 杜欣, 于冲, 等. 一种基于雷达光电信息融合的低空鸟类探测方法、系统: CN114019501A[P]. 2022-02-08. |
CUI Y Y, DU X, YU C, et al. A low altitude bird detection method and system based on radar electro-optical information fusion: CN114019501A?[P]. 2022-02-08 (in Chinese). |
/
〈 |
|
〉 |