综述

机场净空区飞鸟与无人机多源探测技术综述

  • 陈唯实 ,
  • 牛红闯 ,
  • 王鑫 ,
  • 万健 ,
  • 卢贤锋 ,
  • 张洁 ,
  • 王青斌
展开
  • 中国民航科学技术研究院 机场研究所,北京 100028
.E-mail: wishchen@buaa.edu.cn

收稿日期: 2024-09-23

  修回日期: 2024-10-14

  录用日期: 2024-11-22

  网络出版日期: 2024-11-29

基金资助

国家重点研发计划(2023YFB2604103);国家自然科学基金(U2433211);中国民航科学技术研究院基本科研业务费项目(x242060302216)

Review on multi-source detection technologies for birds and drones in airport clearance area

  • Weishi CHEN ,
  • Hongchuang NIU ,
  • Xin WANG ,
  • Jian WAN ,
  • Xianfeng LU ,
  • Jie ZHANG ,
  • Qingbin WANG
Expand
  • Airport Research Institute,China Academy of Civil Aviation Science and Technology,Beijing 100028,China

Received date: 2024-09-23

  Revised date: 2024-10-14

  Accepted date: 2024-11-22

  Online published: 2024-11-29

Supported by

National Key Research and Development Program of China(2023YFB2604103);National Natural Science Foundation of China(U2433211);Basic Research Project of CAST(x242060302216)

摘要

飞鸟和无人机是威胁机场净空区的两大危险源。通过梳理雷达、光电、无线电侦测、声学等主流的飞鸟与非合作无人机目标探测技术,总结国内外典型系统及目标识别分类算法的最新研究进展。在目标分类模型方面,深度学习网络已经脱颖而出,成为一个备受关注的研究方向。基于对各类传感器数据特点的分析,提出机场净空区飞鸟与无人机多源融合探测方案。该方案以雷达数据为主体、其他几类数据为辅,通过数据级、特征级和决策级的分级融合,实现飞鸟与无人机目标的多源融合探测识别。

本文引用格式

陈唯实 , 牛红闯 , 王鑫 , 万健 , 卢贤锋 , 张洁 , 王青斌 . 机场净空区飞鸟与无人机多源探测技术综述[J]. 航空学报, 2025 , 46(10) : 31251 -031251 . DOI: 10.7527/S1000-6893.2024.31251

Abstract

Flying birds and drones are the two major sources of hazards threatening the airport clearance area. The mainstream detection technologies for the targets of flying birds and non-cooperative Unmanned Aerial Vehicles (UAVs) are reviewed, such as detection via radar, optoelectronics, radio, and acoustics, and the latest research progress on the typical systems and target recognition and classification algorithms at home a nd abroad is also discussed. In terms of target classification models, deep learning networks have emerged as a highly regarded research direction. Based on the analysis of the characteristics of various sensor data, a multi-source fusion detection scheme for birds and drones in the airport clearance area is proposed, which is mainly based on radar data, and is supplemented by several other types of data. Multi-source fusion detection and recognition of flying birds and UAV targets is achieved through hierarchical fusion on data level, feature level, and decision level.

参考文献

1 陈唯实, 黄毅峰, 陈小龙, 等. 机场探鸟雷达技术发展与应用综述[J]. 航空学报202243(1): 024758.
  CHEN W S, HUANG Y F, CHEN X L, et al. Development and applications of airport avian radar: Review[J]. Acta Aeronautica et Astronautica Sinica202243(1): 024758 (in Chinese).
2 陈小龙, 陈唯实, 饶云华, 等. 飞鸟与无人机目标雷达探测与识别技术进展与展望[J]. 雷达学报20209(5): 803-827.
  CHEN X L, CHEN W S, RAO Y H, et al. Progress and prospects of radar target detection and recognition technology for flying birds and unmanned aerial vehicles[J]. Journal of Radars20209(5): 803-827 (in Chinese).
3 CHEN W S, CHEN X L, LIU J, et al. Detection and recognition of UA targets with multiple sensors[J]. The Aeronautical Journal2023127(1308): 167-192.
4 CHEN W S, HUANG Y F, LU X F, et al. Review on critical technology development of avian radar system[J]. Aircraft Engineering and Aerospace Technology202294(3): 445-457.
5 陈唯实, 黄毅峰, 卢贤锋. 多传感器融合的无人机探测技术应用综述[J]. 现代雷达202042(6): 15-29.
  CHEN W S, HUANG Y F, LU X F. Survey on application of multi-sensor fusion in UAV detection technology[J]. Modern Radar202042(6): 15-29 (in Chinese).
6 陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[J]. 科技导报201735(11): 30-38.
  CHEN X L, GUAN J, HUANG Y, et al. Radar low-observable target detection?[J]. Science & Technology Review201735(11): 30-38 (in Chinese).
7 DETECT. MERLIN bird and bat tracking radar technologies[EB/OL]. (2024-01-30)[2024-07-31]. .
8 WEBER P, NOHARA T J, GAUTHREAUX S Jr. Affordable, real-time, 3-D avian radar networks for centralized North American bird advisory systems?[C]?∥Bird Strike Committee Proceedings. Vancouver: DigitalCommons@University of Nebraska-Lincoln, 2005.
9 HOFFMANN F, RITCHIE M, FIORANELLI F, et al. Micro-Doppler based detection and tracking of UAVs with multistatic radar[C]∥2016 IEEE Radar Conference (RadarConf). Piscataway: IEEE Press, 2016.
10 陈唯实, 万健, 李敬. 基于机场探鸟雷达数据的鸟击风险评估[J]. 北京航空航天大学学报201339(11): 1431-1436.
  CHEN W S, WAN J, LI J. Bird strike risk assessment with airport avian radar data[J]. Journal of Beijing University of Aeronautics and Astronautics201339(11): 1431-1436 (in Chinese).
11 CHEN W S. Spatial and temporal features selection for low-altitude target detection[J]. Aerospace Science and Technology201540: 171-180.
12 宋强, 彭翔宇, 黄仕林, 等. 基于序贯特征提取的无人机与飞鸟目标分类[J]. 信号处理202440(5): 839-852.
  SONG Q, PENG X Y, HUANG S L, et al. Classification of UAVs and birds using sequential feature extraction[J]. Journal of Signal Processing202440(5): 839-852 (in Chinese).
13 中国电子学会. 机场探鸟雷达系统技术要求: T/ [S]. 北京: 中国标准出版社, 2023.
  Chinese Institute of Electronics. Technical requirements for airport avian radar system: T/ ?[S]. Beijing: Standards Press of China, 2023 (in Chinese).
14 中国电子学会. 机场净空区非合作无人机目标探测系统通用技术要求: T/ [S]. 北京: 中国标准出版社, 2024.
  Chinese Institute of Electronics. General technical requirements for non-cooperative unmanned aerial vehicle target detection system in airport clearance zone : T/ [S]. Beijing: Standards Press of China, 2024 (in Chinese).
15 ACCIPITER. Aviation safety & security[EB/OL]. (2024-05-30)[2024-07-31]. .
16 JAHANGIR M, BAKER C J, OSWALD G A. Doppler characteristics of micro-drones with L-Band multibeam staring radar[C]∥2017 IEEE Radar Conference (RadarConf). Piscataway: IEEE Press, 2017.
17 万显荣, 武冰倩, 易建新, 等. 面向外辐射源雷达发射站定位的合作无人机航迹规划方法研究[J]. 电子与信息学报202446(5): 2057-2064.
  WAN X R, WU B Q, YI J X, et al. UAV path planning method for passive radar transmitter localization[J]. Journal of Electronics & Information Technology202446(5): 2057-2064 (in Chinese).
18 吴志东, 万显荣, 易建新. 外辐射源雷达探鸟实验初步研究[J]. 信息工程大学学报202223(3): 296-301.
  WU Z D, WAN X R, YI J X. Bird detection based on passive radar[J]. Journal of Information Engineering University202223(3): 296-301 (in Chinese).
19 杨超斌, 高全中, 陈传飞, 等. 5G-Advanced技术及应用展望[J]. 信息通信技术202418(1): 25-31.
  YANG C B, GAO Q Z, CHEN C F, et al. 5G-advanced technologies and applications prospect[J]. Information and Communications Technologies202418(1): 25-31 (in Chinese).
20 知乎. 中国移动联合中兴通讯完成5G-A通感一体低空场景能力验证[EB/OL]. (2024-04-12)[2024-07-31]. .
  Zhihu. China Mobile and ZTE have completed the verification of 5G-A sensing integrated low altitude scenario capability?[EB/OL]. ?(2024-04-12)?[2024-07-31]. ?.
21 CHEN V C. The Micro-doppler effect in radar[M]. Boston: Artech House, 2011: 1-5.
22 RITCHIE M, FIORANELLI F, GRIFFITHS H, et al. Micro-drone RCS analysis[C]∥2015 IEEE Radar Conference. Piscataway: IEEE Press, 2015: 452-456.
23 RAHMAN S, ROBERTSON D A. Radar micro-Doppler signatures of drones and birds at K-band and W-band[J]. Scientific Reports20188(1): 17396.
24 MOLCHANOV P, HARMANNY R I A, DE WIT J J M, et al. Classification of small UAVs and birds by micro-Doppler signatures[J]. International Journal of Microwave and Wireless Technologies20146(3-4): 435-444.
25 OH B S, GUO X, WAN F Y, et al. Micro-Doppler mini-UAV classification using empirical-mode decomposition features[J]. IEEE Geoscience and Remote Sensing Letters201815(2): 227-231.
26 MA X Y, OH B S, SUN L, et al. EMD-based entropy features for micro-Doppler mini-UAV classification[C]∥2018 24th International Conference on Pattern Recognition (ICPR). Piscataway: IEEE Press, 2018.
27 FUHRMANN L, BIALLAWONS O, KLARE J, et al. Micro-Doppler analysis and classification of UAVs at Ka band?[C]?∥2017 18th International Radar Symposium (IRS). Piscataway: IEEE Press, 2017.
28 REN J F, JIANG X D. Regularized 2-D complex-log spectral analysis and subspace reliability analysis of micro-Doppler signature for UAV detection[J]. Pattern Recognition201769: 225-237.
29 FIORANELLI F, RITCHIE M, GRIFFITHS H, et al. Classification of loaded/unloaded micro-drones using multistatic radar[J]. Electronics Letters201551(22): 1813-1815.
30 HOFFMANN F, RITCHIE M, FIORANELLI F, et al. Micro-Doppler based detection and tracking of UAVs with multistatic radar[C]∥2016 IEEE Radar Conference (RadarConf). Piscataway: IEEE Press, 2016.
31 ZHANG P F, YANG L, CHEN G, et al. Classification of drones based on micro-Doppler signatures with dual-band radar sensors[C]∥2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL). Piscataway: IEEE Press, 2017.
32 章鹏飞, 李刚, 霍超颖, 等. 基于双雷达微动特征融合的无人机分类识别[J]. 雷达学报20187(5): 557-564.
  ZHANG P F, LI G, HUO C Y, et al. Classification of drones based on micro-Doppler radar signatures using dual radar sensors[J]. Journal of Radars20187(5): 557-564 (in Chinese).
33 刘玉琪, 易建新, 万显荣, 等. 数字电视外辐射源雷达多旋翼无人机微多普勒效应实验研究[J]. 雷达学报20187(5): 585-592.
  LIU Y Q, YI J X, WAN X R, et al. Experimental research on micro-Doppler effect of multi-rotor drone with digital television based passive radar[J]. Journal of Radars20187(5): 585-592 (in Chinese).
34 易建新, 万显荣, 方亮, 等. 中国移动多媒体广播外辐射源雷达相干积累的非均匀采样实现[J]. 电子与信息学报201234(11): 2648-2653.
  YI J X, WAN X R, FANG L, et al. Coherent integration implementation for China mobile multimedia broadcasting based passive radar with nonuniform sampling[J]. Journal of Electronics & Information Technology201234(11): 2648-2653 (in Chinese).
35 CHEN W S, LIU J, LI J. Classification of UAV and bird target in low-altitude airspace with surveillance radar data?[J]. The Aeronautical Journal2019123(1260): 191-211.
36 MESSINA M, PINELLI G. Classification of drones with a surveillance radar signal[C]?∥Computer Vision Systems. Cham: Springer International Publishing, 2019.
37 TORVIK B, OLSEN K E, GRIFFITHS H. Classification of birds and UAVs based on radar polarimetry[J]. IEEE Geoscience and Remote Sensing Letters201613(9): 1305-1309.
38 徐世友, 戴婷, 陈曾平. 基于多维特征的全息雷达“低慢小”目标识别[J]. 现代雷达202244(11): 1-9.
  XU S Y, DAI T, CHEN Z P. LSS target recognition in holographic radar based on multi-dimensional features[J]. Modern Radar202244(11): 1-9 (in Chinese).
39 邓振华, 陈小龙, 薛伟, 等. 海空背景下低慢小目标泛探雷达多域多维特征建模与分析[J]. 信号处理202440(5): 801-814.
  DENG Z H, CHEN X L, XUE W, et al. Multi-domain and multi-dimensional feature modeling and analysis of low, slow, and small targets via ubiquitous radar under sea and air background[J]. Journal of Signal Processing202440(5): 801-814 (in Chinese).
40 KIM B K, KANG H S, PARK S O. Drone classification using convolutional neural networks with merged Doppler images?[J]. IEEE Geoscience and Remote Sensing Letters201714(1): 38-42.
41 MENDIS G J, RANDENY T, WEI J, et al. Deep learning based Doppler radar for micro UAS detection and classification[C]∥MILCOM 2016-2016 IEEE Military Communications Conference. Piscataway: IEEE Press, 2016.
42 SAMARAS S, MAGOULIANITIS V, DIMOU A, et al. UAV classification with deep learning using surveillance radar data[C]∥The 12th International Conference on Computer Vision Systems (ICVS 2019). Cham: Springer International Publishing, 2019.
43 REGEV N, YOFFE I, WULICH D. Classification of single and multi propelled miniature drones using multilayer perceptron artificial neural network[C]?∥International Conference on Radar Systems (Radar 2017). London: IET, 2017.
44 HABERMANN D, DRANKA E, CACERES Y, et al. Drones and helicopters classification using point clouds features from radar[C]?∥2018 IEEE Radar Conference (RadarConf18). Piscataway: IEEE Press, 2018.
45 MOHAJERIN N, HISTON J, DIZAJI R, et al. Feature extraction and radar track classification for detecting UAVs in civillian airspace[C]?∥2014 IEEE Radar Conference. Piscataway: IEEE Press, 2014.
46 陈小龙, 袁旺, 杜晓林, 等. 多波段FMCW雷达低慢小探测数据集(LSS-FMCWR-1.0)及高分辨微动特征提取方法[J]. 雷达学报202413(3): 539-553.
  CHEN X L, YUAN W, DU X L, et al. Multiband FMCW radar LSS-target detection dataset(LSS-FMCWR-1.0)and high-resolution micromotion feature extraction method[J]. Journal of Radars202413(3): 539-553 (in Chinese).
47 傲英创视. 鸟情监测与防入侵系统[EB/OL]. (2024-01-01)[2024-08-08]. .
  ALLIN TECH. Bird Detection & Deterrence[EB/OL]. (2024-01-01)[2024-08-08]. (in Chinese).
48 IDENTIFLIGHT. IDENTIFLIGHT将在乌兹别克斯坦MASDAR风力发电场防止鸟类野生动物与风力涡轮机碰撞[EB/OL]. (2022-12-16)[2024-08-08]. .
  IDENTIFLIGHT. IDENTIFLIGHT will prevent bird wildlife from colliding with wind turbines at the MASDAR wind farm in Uzbekistan[EB/OL]. (2022-12-16)[2024-08-08]. (in Chinese).
49 VOLACOM. Automatic bird detection and deterrence solutions driven by technology and innovation[EB/OL]. (2024-01-01)[2024-08-08]. .
50 陈唯实, 牛红闯, 万健, 等. 基于光电技术的机场鸟情观测[J]. 中国民用航空2024417: 29-32.
  CHEN W S, NIU H C, WAN J, et al. Airport bird observation based on optoelectronic technology[J]. China Civil Aviation2024417: 29-32 (in Chinese).
51 YOSHIHASHI R, KAWAKAMI R, IIDA M, et al. Bird detection and species classification with time-lapse images around a wind farm: Dataset construction and evaluation[J]. Wind Energy201720(12): 1983-1995.
52 KABRA K, XIONG A, LI W, et al. Deep object detection for waterbird monitoring using aerial imagery[C]∥2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA). Piscataway: IEEE Press, 2022.
53 LIU S L, LI Y L, QU J Y, et al. Airport UAV and birds detection based on deformable DETR?[J]. Journal of Physics: Conference Series20222253(1): 012024.
54 HUO D, KASTNER M A, LIU T W, et al. Small object detection for birds with swin transformer[C]∥2023 18th International Conference on Machine Vision and Applications (MVA). Piscataway: IEEE Press, 2023.
55 LI C, ZHANG B C, HU H W, et al. Enhanced bird detection from low-resolution aerial image using deep neural networks?[J]. Neural Processing Letters201949(3): 1021-1039.
56 FAN J C, LIU X X, WANG X Z, et al. Multi-background island bird detection based on faster R-CNN[J]. Cybernetics and Systems202152(1): 26-35.
57 ZOU C, LIANG Y-Q. Bird detection on transmission lines based on DC-YOLO model?[C]?∥Intelligent Information Processing X. Cham: Springer International Publishing, 2020.
58 WU J H, XU W, HE J F, et al. YOLO for penguin detection and counting based on remote sensing images[J]. Remote Sensing202315(10): 2598.
59 王洪昌, 夏舫, 张渊媛, 等. 基于深度学习算法的鸟类及其栖息地识别: 以北京翠湖国家城市湿地公园为例[J]. 生态学杂志202443(7): 2231-2238.
  WANG H C, XIA F, ZHANG Y Y, et al. Bird and habitat recognition based on deep learning algorithm: A case study of Beijing Cuihu National Urban Wetland Park[J]. Chinese Journal of Ecology202443(7): 2231-2238 (in Chinese).
60 SAQIB M, KHAN S D, SHARMA N, et al. A study on detecting drones using deep convolutional neural networks[C]?∥2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Piscataway: IEEE Press, 2017.
61 CRAYE C, ARDJOUNE S. Spatio-temporal semantic segmentation for drone detection?[C]?∥2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Piscataway: IEEE Press, 2019.
62 MAGOULIANITIS V, ATALOGLOU D, DIMOU A, et al. Does deep super-resolution enhance UAV detection?[C]∥2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Piscataway: IEEE Press, 2019.
63 AKER C, KALKAN S. Using deep networks for drone detection[C]∥2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Piscataway: IEEE Press, 2017.
64 ROZANTSEV A, LEPETIT V, FUA P. Detecting flying objects using a single moving camera[J]. IEEE transactions on pattern analysis and machine intelligence39(5):879-892.
65 蒋兆军, 成孝刚, 彭雅琴, 等. 基于深度学习的无人机识别算法研究[J]. 电子技术应用201743(7): 84-87.
  JIANG Z J, CHENG X G, PENG Y Q, et al. A novel UAV recognition algorithm based on deep learning approach[J]. Application of Electronic Technique201743(7): 84-87 (in Chinese).
66 虞晓霞, 刘智, 耿振野, 等. 一种基于深度学习的禁飞区无人机目标识别方法[J]. 长春理工大学学报(自然科学版)201841(3): 95-101.
  YU X X, LIU Z, GENG Z Y, et al. A UAV target recognition method for No flying zone based on deep learning[J]. Journal of Changchun University of Science and Technology (Natural Science Edition)201841(3): 95-101 (in Chinese).
67 马旗. 基于深度学习的低空无人机目标图像检测识别算法研究[D]. 长沙: 国防科技大学, 2019.
  MA Q. Research on target image detection and recognition algorithm of low-altitude UAV based on deep learning[D]. Changsha: National University of Defense Technology, 2019 (in Chinese).
68 谢威宇. 基于深度学习神经网络的无人机与飞鸟识别研究[D]. 广汉: 中国民用航空飞行学院, 2024.
  XIE W Y. Research on UAV and bird recognition based on deep learning neural network[D]. Sichuan: Civil Aviation Flight University of China, 2024 (in Chinese).
69 梁晓, 李俊. 基于改进YOLOv7的红外无人机目标检测方法[J]. 电光与控制202330(12): 38-43, 92.
  LIANG X, LI J. An infrared UAV target detection method based on improved YOLOv7[J]. Electronics Optics & Control202330(12): 38-43, 92 (in Chinese).
70 陈海永, 刘登斌, 晏行伟. 基于IDOU-YOLO的红外图像无人机目标检测算法[J]. 应用光学202445(4): 723-731.
  CHEN H Y, LIU D B, YAN X W. Infrared image UAV target detection algorithm based on IDOU-YOLO?[J]. Journal of Applied Optics202445(4): 723-731 (in Chinese).
71 WANG W H, WANG P Z, NIU Z D. A real-time detection algorithm for unmanned aerial vehicle target in infrared search system[C]∥2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). Piscataway: IEEE Press, 2018.
72 PANG D D, SHAN T, MA P G, et al. A novel spatiotemporal saliency method for low-altitude slow small infrared target detection[J]. IEEE Geoscience and Remote Sensing Letters202119: 7000705.
73 FANG H Z, DING L, WANG L M, et al. Infrared small UAV target detection based on depthwise separable residual dense network and multiscale feature fusion[J]. IEEE Transactions on Instrumentation and Measurement202271: 5019120.
74 夏铭江. 复杂动态场景下红外无人机目标检测方法研究[D]. 西安: 西安电子科技大学, 2022.
  XIA M J. Research on target detection method of infrared UAV in complex dynamic scene[D]. Xi’an: Xidian University, 2022 (in Chinese).
75 欧洪璇. 基于深度学习的红外无人机目标监视技术研究[D]. 西安: 西安电子科技大学, 2022.
  OU H X. Research on target monitoring technology of infrared UAV based on deep learning[D]. Xi’an: Xidian University, 2022 (in Chinese).
76 XU Z J, SU J J, HUANG K. A-RetinaNet: A novel RetinaNet with an asymmetric attention fusion mechanism for dim and small drone detection in infrared images[J]. Mathematical Biosciences and Engineering202320(4): 6630-6651.
77 MISBAH M, KHAN M U, YANG Z H, et al. TF-net: Deep learning empowered tiny feature network for night-time UAV detection?[C]?∥Wireless and Satellite Systems. Cham: Springer Nature Switzerland, 2023.
78 WAH C, BRANSON S, WELINDER P, et al. The caltech-UCSD birds-200-2011 dataset[EB/OL]. (2011-12-30)[2024-08-08]. .
79 BERG T, LIU J X, LEE S W, et al. Birdsnap: Large-scale fine-grained visual categorization of birds?[C]?∥2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014.
80 VAN HORN G, BRANSON S, FARRELL R, et al. Building a bird recognition app and large scale dataset with citizen scientists: The fine print in fine-grained dataset collection?[C]?∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2015.
81 JIANG N, WANG K, PENG X, et al. Anti-UAV: A large multi-modal benchmark for UAV tracking?[DB/OL]. arXiv preprint: 2101. 08466, 2021.
82 COLUCCIA A, FASCISTA A, SCHUMANN A, et al. Drone-vs-bird detection challenge at IEEE AVSS2019[C]?∥2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Piscataway: IEEE Press, 2019.
83 KONDO Y, UKITA N, YAMAGUCHI T, et al. MVA2023 small object detection challenge for spotting birds: dataset, methods, and results[C]?∥2023 18th International Conference on Machine Vision and Applications (MVA). Piscataway: IEEE Press, 2023.
84 WANG Y, CHEN Y, CHOI J, et al. MCL drone dataset[EB/OL]. (2019-12-30)[2024-08-08]. .
85 罗德与施瓦茨科技有限公司. 无人机自动识别、定位和压制系统(一)[J]. 中国无线电2016(8): 72-73.
  ROHDE & SCHWARZ.Automatic identification, positioning and suppression system for UAV (Part 1)?[J]. China Radio2016(8): 72-73 (in Chinese).
86 罗德与施瓦茨科技有限公司. 无人机自动识别、定位和压制系统(二)[J]. 中国无线电2016(8): 72-73.
  ROHDE & SCHWARZ.Automatic identification, positioning and suppression system for UAV (Part 2)?[J]. China Radio2016(9): 71-72 (in Chinese).
87 罗德与施瓦茨科技有限公司. 无人机自动识别、定位和压制系统(三)[J]. 中国无线电2016(10): 72-73.
  ROHDE & SCHWARZ.Automatic identification, positioning and suppression system for UAV (Part 3)?[J]. China Radio2016(10): 72-73 (in Chinese).
88 朱艳巍, 屠丹, 李新利. 无线电监测测向设施现场测试系统研究[J]. 中国无线电2020(1): 38-41.
  ZHU Y W, TU D, LI X L. Research on the field test system of radio monitoring and direction finding facilities[J]. China Radio2020(1): 38-41 (in Chinese).
89 王智芳, 周晓芳, 徐从宇. 基于无线电技术的民用无人机侦测与管控方法在监所环境的探究[J]. 计算机科学与应用20188(9): 1407-1415.
  WANG Z F, ZHOU X F, XU C Y. Research on detection and control method of civilian UAV based on radio technology in prison environment?[J]. Computer Science and Application20188(9): 1407-1415 (in Chinese).
90 罗德与施瓦茨科技有限公司. ARDRONIS反无人机解决方案?[EB/OL]. (2024-01-30)?[2024-08-08]. .
  ROHDE & SCHWARZ. RDRONIS anti drone solution[EB/OL]. (2024-01-30)[2024-08-08]. (in Chinese).
91 IZT. IZT 5509 radio direction finder[EB/OL]. (2024-07-30)[2024-08-08]. .
92 安则科技. 全频段侦测测向[EB/OL]. (2024-07-30) [2024-08-08]. .
  ANZE. Full frequency detection and direction finding[EB/OL]. (2024-07-30)[2024-08-08]. .
93 上海特金. TDOA网格化无线电监测定位系统[EB/OL]. (2024-07-30)[2024-08-08]. .
  TERJIN. TDOA grid based radio monitoring and positioning system?[EB/OL]. (2024-07-30)?[2024-08-08]. (in Chinese).
94 周鑫, 何晓新, 郑昌文. 基于图像深度学习的无线电信号识别[J]. 通信学报201940(7): 114-125.
  ZHOU X, HE X X, ZHENG C W. Radio signal recognition based on image deep learning[J]. Journal on Communications201940(7): 114-125 (in Chinese).
95 俞宁宁, 毛盛健, 周成伟, 等. DroneRFa: 用于侦测低空无人机的大规模无人机射频信号数据集[J]. 电子与信息学报202446(4): 1147-1156.
  YU N N, MAO S J, ZHOU C W, et al. DroneRFa: A large-scale dataset of drone radio frequency signals for detecting low-altitude drones?[J]. Journal of Electronics & Information Technology202446(4): 1147-1156 (in Chinese).
96 LOPATKA J, PEDZISZ M. Automatic modulation classification using statistical moments and a fuzzy classifier[C]?∥WCC 2000-ICSP 2000.2000 5th International Conference on Signal Processing Proceedings. 16th World Computer Congress 2000. Piscataway: IEEE Press, 2000.
97 WONG M L D, NANDI A K. Automatic digital modulation recognition using spectral and statistical features with multi-layer perceptrons?[C]?∥Proceedings of the Sixth International Symposium on Signal Processing and Its Applications. Piscataway: IEEE Press, 2002.
98 ARULAMPALAM G, RAMAKONAR V, BOUZERDOUM A, et al. Classification of digital modulation schemes using neural networks?[C]?∥ISSPA’99. Proceedings of the Fifth International Symposium on Signal Processing and Its Applications. Piscataway: IEEE Press, 1999.
99 TRIANTAFYLLAKIS K, SURLIGAS M, VARDAKIS G, et al. Phasma: An automatic modulation classification system based on Random Forest[C]∥2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). Piscataway: IEEE Press, 2017.
100 O’SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]∥Engineering Applications of Neural Networks. Cham: Springer International Publishing, 2016.
101 KARRA K, KUZDEBA S, PETERSEN J. Modulation recognition using hierarchical deep neural networks[C]∥2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). Piscataway: IEEE Press, 2017.
102 WEST N E, O’SHEA T. Deep architectures for modulation recognition?[C]?∥2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). Piscataway: IEEE Press, 2017.
103 KUMAR ARUMUGAM K S, KADAMPOT I A, TAHMASBI M, et al. Modulation recognition using side information and hybrid learning[C]∥2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). Piscataway: IEEE Press, 2017.
104 SCHMIDT M, BLOCK D, MEIER U. Wireless interference identification with convolutional neural networks[C]∥2017 IEEE 15th International Conference on Industrial Informatics (INDIN). Piscataway: IEEE Press, 2017.
105 ZHANG M, DIAO M, GUO L M. Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access20175: 11074-11082.
106 ALLAHHAM M S, AL-SA’D M F, AL-ALI A, et al. DroneRF dataset: A dataset of drones for RF-based detection, classification and identification?[J]. Data in Brief201926: 104313.
107 WILDLIFE ACOUSTICS. Song meter SM4[EB/OL]. (2024-07-30)[2024-08-12]. .
108 吴科毅, 阮文达, 周棣锋, 等. 基于音节聚类分析的被动声学监测技术及其在鸟类监测中的应用[J]. 生物多样性202331(1): 126-136.
  WU K Y, RUAN W D, ZHOU D F, et al. Syllable clustering analysis-based passive acoustic monitoring technology and its application in bird monitoring[J]. Biodiversity Science202331(1): 126-136 (in Chinese).
109 王一宇, 夏舫, 刘松, 等. 基于深度学习的鸟声识别技术研究: 以北京翠湖国家城市湿地公园为例[J]. 园林202441(4): 19-26.
  WANG Y Y, XIA F, LIU S, et al. Research on bird sound recognition technology based on deep learning: Taking Beijing Cuihu national urban wetland park as an example[J]. Landscape Architecture Academic Journal202441(4): 19-26 (in Chinese).
110 MICROFLOWN AVISA. Skysentry-counter UAS[EB/OL]. ?(2024-06-30)?[2024-08-08]. ?.
111 LEE H, LARGMAN Y, PHAM P, et al. Unsupervised feature learning for audio classification using convolutional deep belief networks[C]∥Proceedings of the 23rd International Conference on Neural Information Processing Systems. New York: ACM, 2009.
112 PICZAK K J. Environmental sound classification with convolutional neural networks[C]∥2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP). Piscataway: IEEE Press, 2015.
113 LANE N D, GEORGIEV P, QENDRO L. DeepEar: Robust smartphone audio sensing in unconstrained acoustic environments using deep learning?[C]?∥Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York: ACM, 2015.
114 WILKINSON B, ELLISON C, NYKAZA E T, et al. Deep learning for unsupervised separation of environmental noise sources[J]. The Journal of the Acoustical Society of America2017, 141(5s): 3964.
115 PARK S, SHIN S, KIM Y, et al. Combination of radar and audio sensors for identification of rotor-type Unmanned Aerial Vehicles (UAVs)?[C]?∥2015 IEEE SENSORS. Piscataway: IEEE Press, 2015.
116 LIU H, WEI Z Q, CHEN Y T, et al. Drone detection based on an audio-assisted camera array[C]∥2017 IEEE Third International Conference on Multimedia Big Data (BigMM). Piscataway: IEEE Press, 2017.
117 KIM J, PARK C, AHN J, et al. Real-time UAV sound detection and analysis system[C]?∥2017 IEEE Sensors Applications Symposium (SAS). Piscataway: IEEE Press, 2017.
118 KIM J, KIM D. Neural network based real-time UAV detection and analysis by sound[J]. Journal of Advanced Information Technology and Convergence20188(1).
119 JEON S, SHIN J W, LEE Y J, et al. Empirical study of drone sound detection in real-life environment with deep neural networks?[C]?∥2017 25th European Signal Processing Conference (EUSIPCO). Piscataway: IEEE Press, 2017.
120 马春艺, 张君, 鲍明, 等. 声场空频特征非参数融合无人机声学探测[J]. 信号处理201935(9): 1590-1598.
  MA C Y, ZHANG J, BAO M, et al. UAV acoustic detection based on non-parametric fusion of spatial-frequency characteristics of sound field[J]. Journal of Signal Processing201935(9): 1590-1598 (in Chinese).
121 王立宏. 小型旋翼无人机声探测识别方法研究[D]. 西安: 西安电子科技大学, 2019.
  WANG L H. Research on acoustic detection and identification method of small rotary-wing UAV[D]. Xi’an: Xidian University, 2019 (in Chinese).
122 HüPPOP O, WINKEL W. Climate change and timing of spring migration in the long-distance migrant Ficedula hypoleuca in central Europe: The role of spatially different temperature changes along migration routes[J]. Journal of Ornithology2006147(2): 344-353.
123 PILLAY R, FLETCHER R J, SIEVING K E, et al. Bioacoustic monitoring reveals shifts in breeding songbird populations and singing behaviour with selective logging in tropical forests[J]. Journal of Applied Ecology201956(11): 2482-2492.
124 BILGER H T, VERTOSICK E, VICKERS A, et al. Higher-order musical temporal structure in bird song[J]. Frontiers in Psychology202112: 629456.
125 XENO-CANTO. Sharing wildlife sounds from around the world[EB/OL]. (2024-04-30)[2024-08-12]. .
126 CORNELL LAB. Machine learning at macaulay library (2024-05-20)?[EB/OL]. [2024-08-12]. .
127 YUAN S H, YANG Y Z, NGUYEN T H, et al. MMAUD: A comprehensive multi-modal anti-uav dataset for modern miniature drone threats[EB/OL]. (2024-05-30)[2024-08-10]. .
128 HENGY S, LAURENZIS M, SCHERTZER S, et al. Multimodal UAV detection: Study of various intrusion scenarios?[C]?∥Electro-Optical Remote Sensing Ⅺ. SPIE, 2017.
129 LAURENZIS M, HENGY S, HAMMER M, et al. An adaptive sensing approach for the detection of small UAV: First investigation of static sensor network and moving sensor platform?[C]?∥Signal Processing, Sensor/Information Fusion, and Target Recognition XXVII. SPIE, 2018.
130 崔莹莹, 杜欣, 于冲, 等. 一种基于雷达光电信息融合的低空鸟类探测方法、系统: CN114019501A[P]. 2022-02-08.
  CUI Y Y, DU X, YU C, et al. A low altitude bird detection method and system based on radar electro-optical information fusion: CN114019501A?[P]. 2022-02-08 (in Chinese).
文章导航

/