基于能量机动的近距空战模型及应用
收稿日期: 2024-06-25
修回日期: 2024-09-03
录用日期: 2024-11-18
网络出版日期: 2024-11-29
Close-range air combat model based on energy maneuverability and its applications
Received date: 2024-06-25
Revised date: 2024-09-03
Accepted date: 2024-11-18
Online published: 2024-11-29
目前近距智能空战的研究侧重理论与算法,在能量机动方面考虑有所欠缺。为了将能量机动融入近距空战模型,对空战理论进行了分析,提出了一种基于能量机动的1对1近距空战专家模型构建方法:基于能量机动,对空战态势进行静态态势与动态态势判断,得到期望的滚转角与法向过载,并采用比例-积分-微分(PID)控制算法对模型横航向与纵向进行控制。即模型通过态势判断直接得到期望飞行状态,无需选择执行某一机动,决策时间步长可以尽可能缩短,有利于缩短观察、判断、决策、行动(OODA)循环时间。仿真结果表明,所建立的模型在60场仿真模拟中获得了58场胜利,可以按设计发挥出战机的机动性能。提出的模型构建方法具有通用性,在近距空战教学与训练、无人机(UAV)空战等方面应用前景广阔。
李恒晖 , 林前辉 , 韩涛锋 , 何阳 . 基于能量机动的近距空战模型及应用[J]. 航空学报, 2025 , 46(7) : 330863 -330863 . DOI: 10.7527/S1000-6893.2024.30863
At present, research on intelligent air combat at close range focuses on theories and algorithms, but lacks consideration in energy maneuverability. To integrate energy maneuverability into close-range air combat, an analysis of air combat theories is conducted, and a one-to-one expert system construction method for close-range air combat based on energy maneuverability is proposed. Based on energy maneuvering, decisions on static and dynamic situations of air combat are made to obtain the expected roll angle and normal G-force, and Proportion-Integration-Differentiation (PID) control algorithm is constructed to control the lateral and longitudinal directions of the model. That is, the model directly obtains the expected flight state through situational judgment, without the need to choose to execute a certain maneuver. The decision time step can be shortened as much as possible, which is beneficial for shortening the Observation-Orientation-Decision-Action (OODA) cycle time. Simulation results show that the established model achieves 58 victories in 60 simulations, which can fully demonstrate the maneuverability of the fighter as designed. The model construction method proposed has universality and prospects for application in close-range air combat teaching and training, Unmanned Aerial Vehicle (UAV) air combat, and other fields.
1 | 孙聪. 从空战制胜机理演变看未来战斗机发展趋势[J]. 航空学报, 2021, 42(8): 525826. |
SUN C. Development trend of future fighter: A review of evolution of winning mechanism in air combat[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525826 (in Chinese). | |
2 | DARPA. ACE program’s AI agent transition from simulation to live flight [EB/OL]. (2023-02-13)[2024-04-27]. . |
3 | 孙智孝, 杨晟琦, 朴海音, 等. 未来智能空战发展综述[J]. 航空学报, 2021, 42(8): 525799. |
SUN Z X, YANG S Q, PIAO H Y, et al. A survey of air combat artificial intelligence[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525799 (in Chinese). | |
4 | XU G Y, LIU Q, ZHANG H. The application of situation function in differential game problem of the air combat[C]?∥2018 Chinese Automation Congress (CAC). Piscataway: IEEE Press, 2018: 1190-1195. |
5 | PARK H, LEE B Y, TAHK M J, et al. Differential game based air combat maneuver generation using scoring function matrix[J]. International Journal of Aeronautical and Space Sciences, 2016, 17(2): 204-213. |
6 | ZHENG H Y, DENG Y, HU Y. Fuzzy evidential influence diagram and its evaluation algorithm[J]. Knowledge-Based Systems, 2017, 131: 28-45. |
7 | PAN Q, ZHOU D Y, HUANG J C, et al. Maneuver decision for cooperative close-range air combat based on state predicted influence diagram[C]?∥2017 IEEE International Conference on Information and Automation (ICIA). Piscataway: IEEE Press, 2017: 726-731. |
8 | ZHENG Z Q, DUAN H B. UAV maneuver decision-making via deep reinforcement learning for short-range air combat[J]. Intelligence Robotics, 2023, 3(1): 76-94. |
9 | 傅莉, 谢福怀, 孟光磊, 等. 基于滚动时域的无人机空战决策专家系统[J]. 北京航空航天大学学报, 2015, 41(11): 1994-1999. |
FU L, XIE F H, MENG G L, et al. An UAV air-combat decision expert system based on receding horizon control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 1994-1999 (in Chinese). | |
10 | 王锐平, 高正红. 无人机空战仿真中基于机动动作库的决策模型[J]. 飞行力学, 2009, 27(6): 72-75, 79. |
WANG R P, GAO Z H. Research on decision system in air combat simulation using maneuver library[J]. Flight Dynamics, 2009, 27(6): 72-75, 79 (in Chinese). | |
11 | 王炫, 王维嘉, 宋科璞, 等. 基于进化式专家系统树的无人机空战决策技术[J]. 兵工自动化, 2019, 38(1): 42-47. |
WANG X, WANG W J, SONG K P, et al. UAV air combat decision based on evolutionary expert system tree[J]. Ordnance Industry Automation, 2019, 38(1): 42-47 (in Chinese). | |
12 | 李高垒, 马耀飞. 基于深度网络的空战态势特征提取[J]. 系统仿真学报, 2017, 29(S1): 98-105. |
LI G L, MA Y F. Feature extraction algorithm of air combat situation based on deep neural networks[J]. Journal of System Simulation, 2017, 29(S1): 98-105 (in Chinese). | |
13 | TENG T H, TAN A H, TAN Y S, et al. Self-organizing neural networks for learning air combat maneuvers[C]?∥The 2012 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE Press, 2012: 1-8. |
14 | YANG Q M, ZHANG J D, SHI G Q, et al. Maneuver decision of UAV in short-range air combat based on deep reinforcement learning[J]. IEEE Access, 2020, 8: 363-378. |
15 | LIU P, MA Y F. A deep reinforcement learning based intelligent decision method for UCAV air combat[C]?∥17th Asia Simulation Conferenve. Melaka: Federation of Asian Simulation Societies, 2017: 274-286. |
16 | PIAO H Y, SUN Z X, MENG G L, et al. Beyond-visual-range air combat tactics auto-generation by reinforcement learning[C]?∥2020 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE Press, 2020: 1-8. |
17 | 付宇阳, 邓向阳, 朱子强, 等. 基于价值滤波的空战机动决策方法[J]. 航空学报, 2023, 44(22): 628871. |
FU Y Y, DENG X Y, ZHU Z Q, et al. Value-filter based air-combat maneuvering optimization[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 628871 (in Chinese). | |
18 | Koren Air Force. F-16C basic employment manual[R]. Seoul: Koren, 2005. |
19 | 秦玮, 马雯, 张楠. 某大机动无人机基于飞行任务的敏捷性评估飞行科目设计与仿真[J]. 测控技术, 2020, 39(11): 119-125. |
QIN W, MA W, ZHANG N. Design and simulation of flight courses for agility evaluation of high maneuver UAV based on flight mission[J]. Measurement & Control Technology, 2020, 39(11): 119-125 (in Chinese). | |
20 | 王忠俊, 高浩. 关于飞机功能敏捷性尺度的计算[J]. 飞行力学, 1994, 12(2): 15-20. |
WANG Z J, GAO H. On the calculation of fighter functional agility metrics[J]. Flight Dynamics, 1994, 12(2): 15-20 (in Chinese). | |
21 | 方伟, 王玉佳, 徐涛, 等. 航空兵智能决策模型的评估方法[J]. 兵器装备工程学报, 2021, 42(8): 126-132. |
FANG W, WANG Y J, XU T, et al. Research on evaluation method of aviation intelligent decision model[J]. Journal of Ordnance Equipment Engineering, 2021, 42(8): 126-132 (in Chinese). | |
22 | BOYD J R. The essence of winning and losing [EB/OL]. (2016-03-13)[2024-04-23]. . |
23 | 冯宇鹏, 郭强, 赵创新, 等. 一种基于试飞数据的飞机稳定盘旋性能极限修正方法: CN114676501A[P]. 2022-06-28. |
FENG Y P, ZHAO Q, ZHAO C X, et al. A method for correcting the limit of stable hovering performance of aircraft based on test flight data: CN114676501A[P]. 2022-06-28 (in Chinese). | |
24 | 邱福生, 魏闯, 院老虎. 基于试飞数据的固定翼飞机盘旋性能仿真分析技术[J]. 科学技术与工程, 2019, 19(30): 348-353. |
QIU F S, WEI C, YUAN L H. Simulation and analysis technology of fixed-wing aircraft circling performance based on flight test data[J]. Science Technology and Engineering, 2019, 19(30): 348-353 (in Chinese). |
/
〈 |
|
〉 |