内封严流对预旋供气系统性能影响的实验研究
收稿日期: 2023-12-28
修回日期: 2024-01-22
录用日期: 2024-02-29
网络出版日期: 2024-03-13
基金资助
国家自然科学基金(52476091);航空发动机及燃气轮机基础科学中心项目(P2022-A-II-007-001);中国博士后科学基金(2023M742834)
Experimental study of inner seal flow effect on pre-swirl air supply system performances
Received date: 2023-12-28
Revised date: 2024-01-22
Accepted date: 2024-02-29
Online published: 2024-03-13
Supported by
National Natural Science Foundation of China(52476091);Science Center for Gas Turbine Project(P2022-A-II-007-001);China Postdoctoral Science Foundation(2023M742834)
预旋供气系统在航空燃气涡轮发动机中承担着为涡轮转子叶片提供冷气的作用。为获得内封严流对预旋供气系统的影响规律,搭建了高压比高转速的预旋供气系统实验平台。通过测量系统各关键截面的压力、温度等参数,分析了内封严进气和出气流量对预旋供气系统的压力、温度分布及系统功耗、温降效率的影响规律,并针对内封严进气对预旋供气系统可能产生的不利影响,提出了一种用于将内封严流引出的旁通结构。结果表明,内封严出气对预旋供气系统影响较小,在实验工况下,系统温降效率最大变化不超过1.9%;内封严进气会对预旋供气系统产生显著负面影响,在压比为1.6的工况下,内封严进气流量增大时温降效率最大降低了20.4%;内封严旁通结构可以有效阻止内封严流在预旋腔内与主流的掺混,并可降低预旋腔内的压力和温度,在压比1.6、内封严占比15%的工况下,气流做功量提高了37.8%,系统温降效率提高了28.2%。
张越 , 刘高文 , 李鹏飞 , 张晓泽 , 林阿强 . 内封严流对预旋供气系统性能影响的实验研究[J]. 航空学报, 2024 , 45(20) : 130038 -130038 . DOI: 10.7527/S1000-6893.2023.30038
The pre-swirl air supply system plays a crucial role in providing cooling air for the turbine rotor blades in aviation gas turbine engines. To investigate the influence of the inner seal on the pre-swirl air supply system, a high-pressure ratio and high-speed pre-swirl air supply system experimental platform is established. After measurement of parameters such as pressure and temperature at various critical sections of the system, the impact of inner seal inflow and outflow on the pressure and temperature distribution of the pre-swirl air supply system, as well as the system power consumption, temperature drop efficiency, is analyzed. In response to the potential adverse effects of the inner seal inflow on the pre-swirl air supply system, a bypass structure is proposed to divert the inner seal flow. The results indicate that the impact of the inner seal outflow on the pre-swirl air supply system is relatively small, with the maximum variation of the temperature drop efficiency not exceeding 1.9% under experimental conditions. The inner seal inflow, on the other hand, can have a significant negative impact on the pre-swirl air supply system. Under the condition of a pressure ratio of 1.6, the maximum reduction in temperature drop efficiency reached 20.4% with an increase in the inner seal inflow. The inner seal bypass structure can effectively prevent the mixing of the inner seal flow with the mainstream in the pre-swirl cavity, reducing the pressure and temperature in the pre-swirl cavity. Under the condition of a pressure ratio of 1.6 and the inner seal accounting for 15%, the power output of the airflow increased by 37.8%, and the system temperature drop efficiency increased by 28.2%.
1 | 杨姗洁, 严旭东, 郭洪波. CMAS环境下热障涂层的损伤机理及防护策略[J]. 航空学报, 2022, 43(10): 527613. |
YANG S J, YAN X D, GUO H B. Failure mechanism and protection strategy of thermal barrier coatings under CMAS attack[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527613 (in Chinese). | |
2 | 李军, 栗智宇, 李志刚, 等. 燃烧室和涡轮相互作用下高压涡轮级气热性能研究进展[J]. 航空学报, 2021, 42(3): 024111. |
LI J, LI Z Y, LI Z G, et al. Aerothermal performance of high pressure turbine stage with combustor-turbine interactions: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 024111 (in Chinese). | |
3 | 徐惠彬, 宫声凯, 刘福顺. 航空发动机热障涂层材料体系的研究[J]. 航空学报, 2000, 21(1): 7-12. |
XU H B, GONG S K, LIU F S. Recent development in materials design of thermal barrier coatings for gas turbine[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(1): 7-12 (in Chinese). | |
4 | 岳国强, 姜玉廷, 向世建, 等. 冷气预旋诱导涡系重构气膜冷却机理研究[J]. 机械工程学报, 2019, 55(4): 181-188. |
YUE G Q, JIANG Y T, XIANG S J, et al. Study on film cooling mechanism of vortex reconstruction induced by swirling coolant flow[J]. Journal of Mechanical Engineering, 2019, 55(4): 181-188 (in Chinese). | |
5 | 郭仲秋, 李彦霖, 饶宇. 涡轮叶片内部具有扰流肋和导流片的多通道冷却流动与传热特性[J]. 工程热物理学报, 2020, 41(9): 2225-2232. |
GUO Z Q, LI Y L, RAO Y. Flow and heat transfer characteristics in multi-pass channel cooling structure with ribs and turning vanes of turbine blades[J]. Journal of Engineering Thermophysics, 2020, 41(9): 2225-2232 (in Chinese). | |
6 | 谢永慧, 景祺, 张荻, 等. 燃气轮机透平叶片冷却通道传热特性研究进展[J]. 中国电机工程学报, 2017, 37(6): 1711-1721. |
XIE Y H, JING Q, ZHANG D, et al. Review on research of heat transfer performance for gas turbine blade cooling channel[J]. Proceedings of the CSEE, 2017, 37(6): 1711-1721 (in Chinese). | |
7 | 刘松龄, 陶智. 燃气涡轮发动机的传热和空气系统[M]. 上海: 上海交通大学出版社, 2018: 727-735. |
LIU S L, TAO Z. Heat transfer and secondary air system of gas turbine engine[M]. Shanghai: Shanghai Jiao Tong University Press, 2018: 727-735 (in Chinese). | |
8 | 龚文彬, 刘高文, 王斐, 等. 叶型接受孔对高位预旋供气系统流动温降影响的实验研究[J]. 西安交通大学学报, 2021, 55(7): 97-105. |
GONG W B, LIU G W, WANG F, et al. Experimental study on the influence of vane-shaped receiver holes on flow and temperature drop of a high-radius pre-swirl air supply system[J]. Journal of Xi’an Jiaotong University, 2021, 55(7): 97-105 (in Chinese). | |
9 | MEIERHOFER B, FRANKLIN C J. An investigation of a preswirled cooling airflow to a turbine disc by measuring the air temperature in the rotating channels[C]∥ Proceedings of the ASME Turbo Expo. New York: ASME, 1981. |
10 | EL-OUN Z B, OWEN J M. Pre-swirl blade-cooling effectiveness in an adiabatic rotor-stator system[C]∥ Proceedings of ASME 1988 International Gas Turbine and Aeroengine Congress and Exposition. New York: ASME, 1988. |
11 | KARABAY H, WILSON M, OWEN J M. Predictions of effect of swirl on flow and heat transfer in a rotating cavity[J]. International Journal of Heat and Fluid Flow, 2001, 22(2): 143-155. |
12 | FARZANEH-GORD M, WILSON M, OWEN J M. Numerical and theoretical study of flow and heat transfer in a pre-swirl rotor-stator system[C]∥ Proceedings of ASME Turbo Expo 2005: Power for Land, Sea, and Air. New York: ASME, 2005: 943-949. |
13 | 朱晓华, 刘高文, 刘松龄, 等. 带盖板的预旋系统温降和压力损失数值研究[J]. 航空动力学报, 2010, 25(11): 2498-2506. |
ZHU X H, LIU G W, LIU S L, et al. Numerical studies of temperature drop and pressure loss in a cover-plate preswirl system[J]. Journal of Aerospace Power, 2010, 25(11): 2498-2506 (in Chinese). | |
14 | 朱晓华. 带盖板的预旋供气系统数值研究[D]. 西安: 西北工业大学, 2010. |
ZHU X H. Numerical study on pre-swirl air supply system with baffle[D]. Xi’an: Northwestern Polytechnical University, 2010 (in Chinese). | |
15 | 吴衡, 冯青, 刘高文, 等. 熵分析法在盖板式预旋系统分析中的应用[J]. 推进技术, 2016, 37(11): 2048-2054. |
WU H, FENG Q, LIU G W, et al. Entropy analysis of a cover-plate pre-swirl system[J]. Journal of Propulsion Technology, 2016, 37(11): 2048-2054 (in Chinese). | |
16 | 林阿强, 赵义祯, 王俊凇, 等. 燃气涡轮发动机预旋系统温降和功耗的作用机制与理论分析[J]. 中国电机工程学报, 2022, 42(11): 4090-4102. |
LIN A Q, ZHAO Y Z, WANG J S, et al. Mechanism and theoretical analysis of temperature drop and power consumption in a pre-swirl system of gas turbine engine[J]. Proceedings of the CSEE, 2022, 42(11): 4090-4102 (in Chinese). | |
17 | 林阿强, 刘高文, 吴衡, 等. 燃气涡轮发动机预旋系统压比和熵增的作用机制与理论分析[J]. 航空学报, 2022, 43(9): 125907. |
LIN A Q, LIU G W, WU H, et al. Mechanism and theoretical analysis of pressure ratio and entropy increase in a pre-swirl system of gas turbine engine[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 125907 (in Chinese). | |
18 | GEIS T, DITTMANN M, DULLENKOPF K. Cooling air temperature reduction in a direct transfer preswirl system[C]∥ Proceedings of ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference. New York: ASME, 2009: 955-964. |
19 | YAN Y Y, GORD M F, LOCK G D, et al. Fluid dynamics of a pre-swirl rotor-stator system[C]∥ Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air. New York: ASME, 2009: 805-813. |
20 | BRICAUD C, GEIS T, DULLENKOPF K, et al. Measurement and analysis of aerodynamic and thermodynamic losses in pre-swirl system arrangements[C]∥ Proceedings of ASME Turbo Expo 2007: Power for Land, Sea, and Air. New York: ASME, 2007: 1115-1126. |
21 | SNOWSILL G D, YOUNG C. Application of CFD to assess the performance of a novel pre-swirl configuration[C]∥ Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air. New York: ASME, 2008: 1555-1562. |
22 | 王欣欣, 刘高文, 龚文彬, 等. 封严流对预旋供气系统温降特性影响的数值研究[J]. 推进技术, 2020, 41(12): 2748-2756. |
WANG X X, LIU G W, GONG W B, et al. Numerical simulations for effects of seal flow on temperature drop characteristics of pre-swirl air supply system[J]. Journal of Propulsion Technology, 2020, 41(12): 2748-2756 (in Chinese). | |
23 | LIU G W, WANG X X, GONG W B, et al. Prediction of the sealing flow effect on the temperature drop characteristics of a pre-swirl system in an aero-engine[J]. Applied Thermal Engineering, 2021, 189: 116717. |
24 | LIU G W, GONG W B, WU H, et al. Experimental and CFD analysis on the pressure ratio and entropy increment in a cover-plate pre-swirl system of gas turbine engine[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 476-489. |
25 | LEI Z, LIU G W. Numerical analysis of air supply parameters and non-uniform characteristics in a cover-plate pre-swirl system with the adjustable flow path[J]. International Journal of Energy Research, 2021, 45(6): 8763-8779. |
26 | LIU G W, LEI Z, LIN A Q, et al. Effect of pre-swirl nozzle closure modes on unsteady flow and heat transfer characteristics in a pre-swirl system of aero-engine[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(4): 685-703. |
/
〈 |
|
〉 |