封面文章

航空发动机数字孪生工程:内涵与关键技术

  • 陶飞 ,
  • 孙清超 ,
  • 孙惠斌 ,
  • 穆晓凯 ,
  • 张贺 ,
  • 宋鲁凯 ,
  • 朱剑琴 ,
  • 陶智
展开
  • 1.北京航空航天大学 国际前沿交叉科学研究院 数字孪生国际研究中心,北京 100191
    2.北京航空航天大学 自动化科学与电气工程学院,北京 100191
    3.北京航空航天大学 虚拟现实技术与系统全国重点实验室,北京 100191
    4.天目山实验室,杭州 311115
    5.大连理工大学 机械工程学院,大连 116023
    6.西北工业大学 航空发动机高性能制造工业和信息化部重点实验室,西安 710072
    7.北京航空航天大学 能源与动力工程学院,北京 100191
.E-mail: ftao@buaa.edu.cn

收稿日期: 2024-02-01

  修回日期: 2024-02-16

  录用日期: 2024-08-08

  网络出版日期: 2024-11-20

基金资助

国家自然科学基金(52275471);新基石科学基金会所设立科学探索奖;天目山实验室项目(TK202302006);北京市卓越青年科学家计划

Aero-engine digital twin engineering: Connotation and key technologies

  • Fei TAO ,
  • Qingchao SUN ,
  • Huibin SUN ,
  • Xiaokai MU ,
  • He ZHANG ,
  • Lukai SONG ,
  • Jianqin ZHU ,
  • Zhi TAO
Expand
  • 1.Digital Twin International Research Center,International Institute for Interdisciplinary and Frontiers,Beihang University,Beijing 100191,China
    2.School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China
    3.State Key Laboratory of Virtual Reality Technology and Systems,Beihang University,Beijing 100191,China
    4.Tianmushan Laboratory,Hangzhou 311115,China
    5.School of Mechanical Engineering,Dalian University of Technology,Dalian 116023,China
    6.Key Laboratory of High Performance Manufacturing for Aero Engine,Northwestern Polytechnical University,Xi’an 710072,China
    7.School of Energy and Power Engineering,Beihang University,Beijing 100191,China
E-mail: ftao@buaa.edu.cn

Received date: 2024-02-01

  Revised date: 2024-02-16

  Accepted date: 2024-08-08

  Online published: 2024-11-20

Supported by

National Natural Science Foundation of China(52275471);the New Cornerstone Science Foundation through the XPLORER PRIZE;Tianmushan Lab Program(TK202302006);Beijing Outstanding Young Scientist Project

摘要

航空发动机是集精密工艺与尖端科技于一体,需兼顾高性能、高效率、高可靠、长寿命等多元目标,且依赖设计、制造、试验、运维多方主体紧密合作的国之重器,承载着强国梦想和强军使命。航空发动机数字孪生工程通过充分利用数据、模型、服务等虚拟资产的潜在价值,融合仿真、预测、优化等多种数智化手段,基于全生命周期系统工程的创新模式、多学科协同的高效平台和多要素耦合分析的全局视角,全面提升航空发动机设计、制造、试验、运维能力,能够为航空发动机全产业链加速发展提供新动力。本文从研发、变革、创新3个角度分析了航空发动机数字化发展趋势,从全生命周期的视角分析提出了航空发动机数字工程的6个阶段的18个需求趋势与挑战;通过分析数字孪生在航空发动机全生命周期中的研用现状,指出航空发动机在理论体系、组织协作、软件平台、标准规范方面的不足;以作者团队前期提出的数字孪生五维模型、数字工程“数智眼”体系架构、数字试验测试验证体系架构为基础理论,进一步提出了航空发动机数字孪生工程的内涵和体系架构,研究了航空发动机数字孪生工程关键技术体系;从思想、技术、模式、产业等角度对发动机数字孪生工程发展提出了若干建议。期望相关工作为航空发动机数字孪生工程数力和智力的开发利用,以及航空发动机设计、制造、试验测试验证、交付、运维、回收全生命周期能力的全面提升提供参考,助力航空发动机数字化、智能化研制水平和服务能力的跨越式发展。

本文引用格式

陶飞 , 孙清超 , 孙惠斌 , 穆晓凯 , 张贺 , 宋鲁凯 , 朱剑琴 , 陶智 . 航空发动机数字孪生工程:内涵与关键技术[J]. 航空学报, 2024 , 45(21) : 630283 -630283 . DOI: 10.7527/S1000-6893.2024.30283

Abstract

As the strategic equipment for a powerful country, aero-engines are considered as the integrations of precision processing and cutting-edge technologies. The development of aero-engine relies on the close cooperation of full lifecycles (i.e., de-sign, manufacturing, testing, maintenance), to meet the strict requirements like high-performance, high-reliability, and long service life, etc. Based on multi-source virtual assets (i.e., data, models, and services) and multi-type digital technologies (i.e., simulation, prediction, and optimization), aero-engine digital twin engineering promises to explore the full lifecycle-based innovative modes and interdisciplinary collaboration-based efficient platforms. In this case, the capacities of aero-engines throughout their entire lifecycles can be greatly improved, giving new impetus for the accelerated development of entire chain in aero-engine industry. In this study, 18 challenges of aero-engine digital twin engineering are presented firstly; in addition, by reviewing the digital twin researches in aero-engine full lifecycles, the shortcomings on theories, software, and standards are revealed; thirdly, based on the 5D model of digital twin, ‘eye model’ architecture of digital engineering and architecture of digital experiment, testing and validation proposed by the authors’ team, the connotation, systematic framework and key technologies of aero-engine digital twin engineering are proposed; finally, several suggestions are provided to advance aero-engine digital twin engineering. The current efforts aim to illuminate pathways for enhancing the support capabilities in full lifecycles, and enabling a leap in digital/intelligent development for aero-engines.

参考文献

1 陶飞, 张辰源, 刘蔚然, 等. 数字工程及十个领域应用展望[J]. 机械工程学报202359(13): 193-215.
  TAO F, ZHANG C Y, LIU W R, et al. Digital engineering and its ten application outlooks[J]. Journal of Mechanical Engineering202359(13): 193-215 (in Chinese).
2 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统201925(1): 1-18.
  TAO F, LIU W R, ZHANG M, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems201925(1): 1-18 (in Chinese).
3 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J].计算机集成制造系统201824(1): 1-18.
  TAO F, LIU W R, LIU J H, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems201824(01):1-18 (in Chinese).
4 QI Q, TAO F, HU T, et al. Enabling technologies and tools for digital twin[J]. Journal of Manufacturing Systems202158: 3-21.
5 TAO F, SUN X, CHENG J, et al. makeTwin: A reference architecture for digital twin software platform?[J]. Chinese Journal of Aeronautics202437(1): 1-18.
6 陶飞, 马昕, 胡天亮, 等. 数字孪生标准体系[J].计算机集成制造系统201925(10): 2405-2418.
  TAO F, MA X, HU T L, et al. Research on digital twin standard system[J]. Computer Integrated Manufacturing Systems201925(10): 2405-2418 (in Chinese).
7 陶飞, 高鹏飞, 张辰源, 等. 数字试验测试验证: 理论、关键技术及应用探索[J]. 机械工程学报202460(15):227-254.
  TAO F, GAO P F, ZHANG C Y, et al. D-ETV: Digital Experiment, Testing and Verification[J]. Journal of Mechanical Engineering60(15): 227-254 (in Chinese).
8 人民日报. 推动质量变革、 效率变革、 动力变革——代表委员谈加快建设质量强国[EB/OL]. [2024-02-27].
9 人民日报. 中共中央关于进一步全面深化改革?推进中国式现代化的决定[EB/OL]. [2024-07-21].
10 TAO F, MAN X, LIU W, engineering Digital : State-of-the-art and perspectives[J]. Digital Engineering20241: 100007.
11 陶飞, 张辰源, 张贺, 等. 未来装备探索: 数字孪生装备[J]. 计算机集成制造系统202228(1): 1-16.
  TAO F, ZHANG C Y, ZHANG H, et al. Future equipment exploration: digital twin equipment[J]. Computer Integrated Manufacturing Systems202228(1): 1-16 (in Chinese).
12 郭东明. 高性能制造[J]. 机械工程学报202258(21): 225-242.
  GUO D M. High performance manufacturing[J]. Journal of Mechanical Engineering202258(21): 225-242 (in Chinese).
13 TAO F, QI Q. Make more digital twins[J]. Nature2019573(7775): 490-491.
14 TAO F, ZHANG H, ZHANG C Y. Advancements and challenges of digital twins in industry[J]. Nature Computational Science20244(3): 169-177.
15 TAO F, LIU A, HU T. Digital twin driven smart design[M]. Academic Press, 2020.
16 TAO F, SUI F, LIU A, et al. Digital twin-driven product design framework[J]. International Journal of Production Research201957(12): 3935-3953.
17 黄维娜, 黎方娟, 祁宏斌. 航空发动机数字工程初步研究与发展思考[J]. 航空学报202445(5): 529693.
  HUANG W N, LI F J, QI H B. Preliminary investigation and thoughts on aero-engine digital engineering development[J]. Acta Aeronautica et Astronautica Sinica202445(5): 529693 (in Chinese).
18 刘大响, 金捷, 刘邓欢. 数值仿真技术在航空动力研制中的地位和作用[J].航空动力学报202237(10): 2017-2024.
  LIU D X, JIN J, LIU D H. Position and function of numerical simulation technology in aero-engine development[J]. Journal of Aerospace Power202237(10): 2017-2024 (in Chinese).
19 胡忠志, 曹文宇, 何皑, 等 .数字发动机技术现状、挑战及关键问题[J]. 航空制造技术202366(21): 22-3.
  HU Z Z, CAO W Y, HE A, et al. Digital engine technology status, challenges and key issues[J]. Aeronautical Manufacturing Technology202366(21): 22-33 (in Chinese).
20 王乐, 周军, 崔艳林. 数字孪生在航空发动机领域的应用分析[J]. 航空动力2020(5): 63-66.
  WANG L, ZHOU J, CUI Y L. Application analysis of digital twins in the field of aircraft engines [J]. Aviation Power2020(5): 63-66 (in Chinese).
21 尹泽勇, 米栋, 张立章, 等. 航空动力系统整机多学科设计优化方法[J]. 航空动力学报202237(10):2025-2045.
  YIN Z Y, MI D, ZHANG L Z, et al. Multidisciplinary design optimization method of overall aircraft power system[J]. Journal of Aerospace Power202237(10): 2025-2045 (in Chinese).
22 XU Z X, JI F, DING S, et al. Digital twin-driven optimization of gas exchange system of 2-stroke heavy fuel aircraft engine[J]. Journal of Manufacturing Systems202158: 132-145.
23 ELLIS M, BOJDO N, FILIPPONE A, et al. Monte Carlo predictions of aero-engine performance degradation due to particle ingestion[J]. Aerospace20218(6): 146.
24 刘魁, 刘婷, 魏杰, 等. 数字孪生在航空发动机可靠性领域的应用探索[J]. 航空动力2019(4): 61-64.
  LIU K, LIU T, WEI J, et al. Digital twin and its potential application in the field of aero engine reliability[J]. Aerospace Power2019(4): 61-64 (in Chinese).
25 任祝寅, 周华, 张健, 等. 数字孪生在航空发动机燃烧室设计阶段的应用与展望[J]. 航空制造技术202265(17): 34-39.
  REN Z Y, ZHOU H, ZHANG J, et al. Application and prospect of digital twin in design phase of aero-engine combustion chambers[J]. Aeronautical Manufacturing Technology202265(17): 34-39 (in Chinese).
26 GE. Digital twin technology [EB/OL]. .
27 张志博, 江建玲, 贾博博. 数字孪生在压气机试验中的应用探索[J]. 航空动力2022(4): 63-66.
  ZHANG Z B, JIANG J L, JIA B B. Digital twin in the compressor test [J]. Aviation Power2022(4): 63-66 (in Chinese).
28 WU S, TIAN S, CHEN X, et al. Digital twin-driven blade rub-impact diagnosis using blade tip timing[J]. Measurement2024231: 114539.
29 REITENBACH S, VIEWEG M, BECKER R, et al. Collaborative aircraft engine preliminary design using a virtual engine platform, part a: Architecture and methodology[C]∥AIAA Scitech 2020 Forum. 2020: 0867.
30 GUAN J, LI Y, LIU J, et al. Experimental and numerical research on the performance characteristics of OPLVCR engine based on the NSGA II algorithm using digital twins[J]. Energy Conversion and Management2021236: 114052.
31 KRAFT J, KUNTZAGK S. Engine fleet-management: The use of digital twins from a MRO perspective[C]∥ Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 201750770: V001T01A007.
32 TADEJA S K, SESHADRI P, KRISTENSSON P O. AeroVR: An immersive visualisation system for aerospace design and digital twinning in virtual reality[J]. The Aeronautical Journal2020124(1280): 1615-1635.
33 TADEJA S K, LU Y, SESHADRI P, et al. Digital twin assessments in virtual reality: An explorational study with aeroengines[C]∥2020 IEEE Aerospace Conference. 2020: 1-13.
34 XU Z, LA ROCCA A, PICKERING S L, et al. Mechanical and thermal design of an aeroengine start-er/generator [C]∥2015 IEEE International Electric Machines & Drives Conference (IEMDC). 2015: 1607-1613.
35 TAO F, ZHANG M,Digital twin shop-floor a new shop-floor paradigm towards smart manufacturing[J]. IEEE Access20275: 20418-20427.
36 TAO F, ZHANG M, NEE AYC. Digital twin driven smart manufacturing[M]. Academic Press, 2019.
37 王登勇, 乐华勇, 朱荻. 薄壁回转体表面岛屿状高凸台结构旋印电解加工成形过程研究[J]. 机械工程学报202359(3): 337-348.
  WANG D Y, LE H Y, ZHU D. Investigation of the shaping process of island-like high convex structure on thin-walled revolving part during counter-rotating electrochemical machining[J]. Journal of Mechanical Engineering202359(3): 337-348 (in Chinese).
38 赵罡, 李瑾岳, 徐茂程, 等. 航空发动机关键装配技术综述与展望[J]. 航空学报202243(10): 527484.
  ZHAO G, LI J Y, XU M C, et al. Research status and prospect of key aeroengine assembly technology[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527484 (in Chinese).
39 曹增义, 单继东, 王昭阳, 等. 面向航空发动机制造的数字孪生应用架构探索与实践[J]. 航空制造技术202265(19): 40-49.
  CAO Z Y, SHAN J D, WANG Z Y, et al. Exploration and practice of digital twin architecture for aero-engine manufacturing[J]. Aeronautical Manufacturing Technology202265(19): 40-49 (in Chinese).
40 孙惠斌, 颜建兴, 魏小红, 等. 数字孪生驱动的航空发动机装配技术[J].中国机械工程202031(7): 833-841.
  SUN H B, YAN J X, WEI X H, et al. Digital twin-driven aero-engine assembly technology[J]. China Mechanical Engineering202031(7): 833-841 (in Chinese).
41 LI J, ZHOU G, ZHANG C. A twin data and knowledge-driven intelligent process planning framework of aviation parts[J]. International Journal of Production Research202260(17): 5217-5234.
42 ZHANG C, SUN Q C, SUN W, et al. A construction method of digital twin model for contact characteristics of assembly interface[J]. The International Journal of Advanced Manufacturing Technology2021113: 2685-2699.
43 ZHAO B B, WANG Y L, SUN Q C, et al. Monomer model: an integrated characterization method of geo-metrical deviations for assembly accuracy analysis[J]. Assembly Automation202141(4): 514-523.
44 吴法勇, 王维斌, 陈雪骑, 等. 数字孪生驱动的转子装配及不平衡分布[J/OL]. 北京航空航天大学学报, .
  WU F Y, WANG W B, CHEN X Q, et al. Rotor assembly and unbalance distribution driven by digital twins[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, (in Chinese).
45 LEE W Y, DAWES W D, COULL J D. The required aerodynamic simulation fidelity to usefully support a gas turbine digital twin for manufacturing[J]. Journal of the Global Power and Propulsion Society20215: 15-27.
46 CAI H, ZHU J, ZHANG W. Quality deviation control for aircraft using digital twin[J]. Journal of Computing and Information Science in Engineering202121(3): 031008.
47 LI J Y, ZHAO G, ZHANG P, et al. A Digital Twin-based on-site quality assessment method for aero-engine assembly[J]. Journal of Manufacturing Systems202371: 565-580
48 石嵩, 刘检华, 巩浩, 等. 考虑粗糙表面接触配合的航空发动机多级转子装配误差传递建模[J]. 机械工程学报202359(17): 208-219.
  SHI S, LIU J H, GONG H, et al. Modeling of error transfer in multistage rotors assembly of aero engine considering rough surface contact[J]. Journal of Mechanical Engineering202359(17): 208-219 (in Chinese).
49 吴腾云, 唐松松. 基于数字孪生的航空发动机工艺设计系统构建方法[J].自动化技术与应用202443(6): 69-73.
  WU T Y, TANG S S. Construction method of aircraft engine process design system based on digital twin[J]. Techniques of Automation & Applications202443(6): 69-73 (in Chinese).
50 SCHLEICH B, ANWER N, MATHIE L, et al. Shaping the digital twin for design and production engineering[J]. CIRP Annals-Manufacturing Technology201766(1): 141-144.
51 SUN H, WANG J, CHEN K, et al. A tip clearance prediction model for multistage rotors and stators in aero-engines [J]. Chinese Journal of Aeronautics202134(2): 343–357.
52 张譍之, 孙惠斌, 周平, 等. 数字孪生驱动的转静子装配间隙动态预测与调控[J]. 计算机集成制造系统202329(6): 2035-2046.
  ZHANG Y Z, SUN H B, ZHOU P, et al. Digital twin-driven dynamic prediction and control method for assembly clearance of multi-stage rotor and stator [J]. Computer Integrated Manufacturing Systems202329(6): 2035-2046 (in Chinese).
53 SEGALMAN D J, GREGORY D L, STARR M J, et al. Handbook on dynamics of jointed structures[R]. Sandia National Laboratories, Albuquerque, 20091028891.
54 刘宁, 陶智. 旋转状态气膜冷却的大涡模拟[J]. 北京航空航天大学学报201036(5): 529-533.
  LIU N, TAO Z. Large eddy simulation of film cooling under rotating condition[J]. Journal of Beijing University of Aeronautics and Astronautics201036(5): 529-533 (in Chinese).
55 葛向东, 吴法勇, 刘永泉, 等. 航空发动机整机振动问题研究方法及工程应用[J]. 航空学报202445(4): 628353.
  GE X D, WU F Y, LIU Y Q, et al. Research methods for whole aeroengine vibration and their engineering application[J]. Acta Aeronautica et Astronautica Sinica202445(4): 628353 (in Chinese).
56 漆琪, 杨吉祥, 丁汉. 面向航空发动机复杂机匣深腔测量的机器人位姿优化及关节路径平滑方法 [J]. 机械工程学报202359 (15): 17-27.
  QI Q, YANG J X, DING H. Robot pose optimization and joint path smoothing method for aero-engine complex casing deep cavity measurement[J]. Journal of Mechanical Engineering202359(15): 17-27 (in Chinese).
57 SUN Q C, YUAN B, MU X K, et al. Bolt preload measurement based on the acoustoelastic effect using smart piezoelectric bolt[J]. Smart Materials and Structures201928(5): 055005.
58 YUAN B, SUN Q C, WANG X X, et al. A novel acoustic model for interface stiffness measurement of dry tribological interface considering geometric dispersion effect and boundary effect[J]. Tribology International2021162: 107140.
59 MU X K, WANG Y L, YUAN B, et al. A new assembly precision prediction method of aeroengine high-pressure rotor system considering manufacturing error and deformation of parts [J]. Journal of Manufacturing Systems202161: 112-124.
60 谷振鹏, 邓宏武, 陶智, 等. 旋转状态下叶片前缘复合换热实验[J].北京航空航天大学学报201137(11): 1404-1409.
  GU Z P, DENG H W, TAO Z, et al. Experiments of combined heat transfer in leading of blades at rotating state[J]. Journal of Beijing University of Aeronautics and Astronautic201137(11): 1404-1409 (in Chinese).
61 BOTZ M, EMIROGLU A, OSTERMINSKI K . et al. Monitoring and modeling of a wind turbine support structure to create a digital twin[J]. Beton Stahlbetonbau2020115: 342-354.
62 BRANLARD E, JONKMAN J, DANA S, et al. Digital twin based on OpenFAST linearizations for real-time load and fatigue estimation of land-based turbines[J]. Journal of Physics: Conference Series20201618: 022030.
63 ZACCARI V, STENFELT M, ASLANIDOU I, et al. Fleet monitoring and diagnostics framework based on digital twin of aero-engines[C]∥Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018.
64 梅英杰, 王大伟, 孙传智, 等. 基于增强现实的航空发动机机匣数字孪生测调系统[J/OL]. 航空学报, doi: 10.7527/S1000-6893.2023.29462 .
  MEI Y J, WANG D W, SUN C Z, et al. A digital twin testing and adjusting system for aero-engine casings based on augment-ed reality[J]. Acta Aeronautica et Astronautica Sinica10.7527/S1000-6893.2023.29462 (in Chinese).
65 TAO F, ZAHNG M, LIU Y, et al. Digital twin driven prognostics and health management for complex equipment[J]. CIRP Annals201867(1): 169-172.
66 曹建国. 航空发动机仿真技术研究现状、挑战和展望[J]. 推进技术201839(5): 961-970.
  CAO J G. Status, challenges and perspectives of aero-engine simulation technology[J]. Journal of propulsion technology201839(5): 961-970 (in Chinese).
67 GRIEVES M, VICKERS J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems[J]. Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches2017: 85-113.
68 刘魁, 王潘, 刘婷. 数字孪生在航空发动机运行维护中的应用[J]. 航空动力2019(4): 70-74.
  LIU K, WANG P, LIU T. The application of digital twin in aero engine operation and maintenance[J]. Aerospace Power2019(4): 70-74 (in Chinese).
69 吴雄, 彭云龙, 张波, 等. 基于数字孪生的舰载机发动机健康管理技术[J]. 航空动力2022(4): 33-36.
  WU X, PENG Y L, ZHANG B, et al. Health management technology for carrier based aircraft engines based on digital twins[J]. Aviation Power2022(4): 33-36 (in Chinese).
70 曹明, 黄金泉, 周健, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇-气路、机械和FADEC系统故障诊断与预测[J]. 航空学报202243(9): 625573.
  CAO M, HUANG J Q, ZHOU J, et al. Current status, challenges and opportunities of civil aero engine diagnostics & health management I: Diagnosis and prognosis of engine gas path, mechanical and FADEC[J]. Acta Aeronautica et Astronautica Sinica202243(9): 625573 (in Chinese).
71 EZHILARASU C M, JENNIONS I K. A system-level failure propagation detectability using ANFIS for an aircraft electrical power system[J]. Applied Sciences202010(8): 2854.
72 PENG C C, CHEN Y H. Digital twins-based online monitoring of TFE-731 turbofan engine using Fast orthogonal search[J]. IEEE Systems Journal202116(2): 3060-3071.
73 王诗彬, 王世傲, 陈雪峰, 等. 可解释性智能监测诊断网络构造及航空发动机整机试车与中介轴承诊断应用[J]. 机械工程学报202460(12): 90-106.
  WANG S B, WANG S A, CHEN X F, et al. Interpretable network construction for intelligent monitoring and diagnosis, and application in inter-shaft bearing diagnosis while aero-engine test[J]. Journal of Mechanical Engineering202460(12): 90-106 (in Chinese).
74 STOUMPOS S, THEOTOKATOS G. A novel methodology for marine dual fuel engines sensors diagnostics and health management[J]. International Journal of Engine Research2021: 1468087421998635.
75 MOSALLAM A, MEDJAHER K, ZERHOUNI N. Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction[J]. Journal of Intelligent Manufacturing201627(5): 1037-1048.
76 XIONG M, WANG H, FU Q, et al. Digital twin-driven aero-engine intelligent predictive maintenance[J]. The International Journal of Advanced Manufacturing Technology2021114(11): 3751-3761.
77 付洋, 曹宏瑞, 郜伟强, 等. 数字孪生驱动的航空发动机涡轮盘剩余寿命预测[J]. 机械工程学报202157(22): 106-113.
  FU Y, CAO H R, GAO W Q, et al. Digital twin driven remaining useful life prediction for aero-engine turbine discs[J]. Journal of Mechanical Engineering202157(22): 106-113 (in Chinese).
78 曹明, 王鹏, 左洪福, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ: 地面综合诊断、寿命管理和智能维护维修决策[J]. 航空学报202243(9): 625574.
  CAO M, WANG P, ZUO H F, et al. Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅱ: Comprehensive off-board diagnostics, life management and intelligent condition based MRO[J]. Acta Aeronautica et Astronautica Sinica202243(9): 625574 (in Chinese).
79 MARTINSSON J, PANAROTTO M, KOKKOLARAS M, et al. Exploring the potential of digital twin-driven design of aero-engine structures[J]. Proceedings of the Design Society20211: 1521-1528.
80 刘蔚然, 陶飞, 程江峰, 等. 数字孪生卫星:概念、关键技术及应用[J].计算机集成制造系统202026(3): 565-588.
  LIU W R, TAO F, CHENG J F, et al. Digital twin satellite: concept, key technologies, and application[J]. Computer Integrated Manufacturing Systems202026(3): 565-588 (in Chinese).
81 陶飞, 张贺, 戚庆林, 等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统202127(1): 1-15.
  TAO F, ZHANG H, QI Q L, et al. Theory of digital twin modeling and its application[J]. Computer Integrated Manufacturing Systems202127(1): 1-15 (in Chinese).
82 TAO F, XIAO B, QI Q, et al. Digital twin modeling[J]. Journal of Manufacturing Systems202464: 372-389.
83 ZHANG M, TAO F, HUANG B, et al. Digital twin data: methods and key technologies[J]. Digital Twin20221: 2.
84 TAO F, QI Q, LIU A, et al. Data-driven smart manufacturing[J]. Journal of Manufacturing Systems201848: 157-169.
85 TAO F, QI Q, NEE AYC, Digital Twin Driven Ser-vice [M]. Academic Press, 2022.
86 陶飞, 马昕, 戚庆林, 等. 数字孪生连接交互理论与关键技术[J].计算机集成制造系统202329(1): 1-10.
  TAO F, MA X, QI Q L, et al. Theory and key technologies of digital twin connection and interaction[J]. Computer Integrated Manufacturing Systems202329(1): 1-10 (in Chinese).
87 陶飞, 张萌, 程江峰, 等. 数字孪生车间——一种未来车间运行新模式[J]. 计算机集成制造系统201723(1): 1-9.
  TAO F, ZHANG M, CHENG J F, et al. Digital twin workshop: a new paradigm for future workshop[J]. Computer Integrated Manufacturing Systems201723(1): 1-9 (in Chinese).
88 陶飞, 戚庆林, 张萌, 等. 数字孪生车间及应用实践[M]. 北京: 清华出版社, 2021.
  TAO F, QI Q L, ZHANG M, et al. Digital twin and its application in shopfloor [M]. Beijing: Tsinghua University Press, 2021 (in Chinese).
89 QI Q L, TAO F, Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison [J]. IEEE Access, 2018, 6: 3585-3593.
90 陶飞, 张辰源, 戚庆林, 等. 数字孪生成熟度模型[J].计算机集成制造系统202228(5): 1267-1281.
  TAO F, ZHANG C Y, QI Q L, et al. Digital twin maturity model[J]. Computer Integrated Manufacturing Systems202228(5): 1267-1281 (in Chinese).
文章导航

/