航空航天先进制造理论与技术研究现状及趋势

  • 丁文锋 ,
  • 万年 ,
  • 赵彪 ,
  • 傅玉灿 ,
  • 徐九华
展开
  • 南京航空航天大学

收稿日期: 2024-09-30

  修回日期: 2024-11-09

  网络出版日期: 2024-11-18

基金资助

国家自然科学基金项目;两机基础科学中心重点项目;江苏省自然科学基金项目;中央高校基本科研业务费

Research status and tendency of advanced manufacturing theory and technology in aerospace

  • DING Wen-Feng ,
  • WAN Nian ,
  • ZHAO Biao ,
  • FU Yu-Can ,
  • XU Jiu-Hua
Expand

Received date: 2024-09-30

  Revised date: 2024-11-09

  Online published: 2024-11-18

摘要

先进制造理论与技术是科技进步和社会发展的基石,也是支撑航空航天工业及国防建设的基础,同时也是促进高端装备革新的关键。但是,随着新材料新结构的发展,传统制造技术难以满足航空航天领域关键零部件加工要求。因此,先进制造理论与技术成为航空航天领域的重要研究方向,获得了快速发展。本文首先介绍了航空航天先进制造理论与技术的内涵和特点,总结了高速/超高速加工、精密成形制造、微细与纳米加工、原子及近原子尺度加工、现代特种加工、快速原型制造以及绿色制造等航空航天领域典型先进制造理论与技术的基本原理、应用领域以及适用材料范围。其次,归纳了先进制造理论与技术的最新研究进展,包括高速高效加工技术、高性能复合加工技术、智能控制加工技术、大型化、微型化以及新兴材料技术。再次,深入探讨了当前先进制造理论与技术所面临的主要挑战和未来的发展趋势。随后,阐述了先进制造理论与技术的工程应用和设计制造一体化,并强调其在航空航天制造领域的重要地位。最后,分析了航空航天新一代先进制造理论与技术涉及的前沿领域,明确未来发展要点,指出重点发展方向。

本文引用格式

丁文锋 , 万年 , 赵彪 , 傅玉灿 , 徐九华 . 航空航天先进制造理论与技术研究现状及趋势[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.31309

Abstract

Advanced manufacturing theory and technology are the cornerstone of technological progress and social development, as well as the foundation for supporting the aerospace industry and national defense construction. They are also the key to promoting innovation in high-end equipment. However, with the development of new materials and new structures, traditional manufacturing techniques are unable to meet the processing requirements of key components in the aerospace industry. Therefore, advanced manufacturing theory and technology have become an important research direction in the aerospace field and have achieved rapid development. This article first introduces the connotation and characteristics of advanced manufacturing theory and technology in aerospace, summarizes the basic principles, application areas, and application material scope of typical advanced manufacturing theories and technologies in the aerospace field, such as high/ultra speed machining, precision forming manufacturing, micro and nano machining, atomic and near atomic scale machining, modern special machining, rapid prototyping manufacturing, and green manufacturing. Secondly, the latest research progress in advanced manufacturing theory and technology is summarized, Including high speed and efficient machining technology, high performance composite machining technology, intelligent control machining technology, large scale, miniaturization, and emerging material technology. Once again, the main challenges and future development trends faced by current advanced manufacturing theories and technologies are discussed in depth. Subsequently, the engineering application and design manufacturing integration of advanced manufacturing theory and technology are elaborated, and its important position in the aerospace manufacturing field is emphasized. Finally, the frontier fields involved in the new generation of advanced manufacturing theory and technology in aviation and aerospace are analyzed, and the principal development points for the future are clarified, the pivotal development directions is indicated.

参考文献

[1]闫存富, 孔令云, 杨汉嵩.先进制造技术概述[J].新技术新工艺, 2013, 22(12):18-20
YAN C F, KONG L Y, YANG H S.Overview of advanced manufacturing technology[J].New Technology and New Process, 2013, 22(12):18-20
[2]李锡柱.先进制造技术发展现状及趋势分析[J].中国机械, 2023, 42(23):17-21
LI X Z.Analysis of the current status and trends of advanced manufacturing technology development[J].Machine China, 2023, 42(23):17-21
[3]SIDDIQUI H, SINGH N, NAIDU P, et al.Emerging electrochemical additive manufacturing technology for advanced materials: structures and applications[J].Materials Today, 2023, 70:161-192
[4]梁伟, 王先.先进制造技术在航空业的应用与发展[J].科技视界, 2013, 3(10):53-
LIANG W, WANG X.Application and development of advanced manufacturing technology in the aviation industry[J].Science and Technology Vision, 2013, 3(10):53-
[5]BAITIMEROV R M, BYKOV V A.Processing of alumina reinforced copper metal matrix composite by selective laser melting technology[J].Solid State Phenomena, 2021, 316:175-180
[6]NUMAN K, ANIELLO R.A systematic review of design for additive manufacturing of aerospace lattice structures: current trends and future directions[J].Progress in Aerospace Sciences, 2024, 149:101021
[7]BATYGIN Y V, CHAPLYGIN E A, SABOKAR O S.Magnetic pulsed processing of metals for advanced technologies of modernity – a brief review[J].Electrical Engineering and Electromechanics, 2016, 5:35-39
[8]林洁琼, 吴明磊, 刘思洋, 等.超声振动辅助切削复合材料的加工机理及试验[J].中国表面工程, 2024, 37(2):182-198
LIN J Q, WU M L, LIU S Y, et al.Processing mechanism and experiment of ultrasonic vibration assisted cutting of SiCpAl composites[J].China Surface Engineering, 2024, 37(2):182-198
[9]韩蕾, 史振宇, 袭建人, 等.陶瓷基复合材料超声振动辅助加工技术研究现状[J].工具技术, 2024, 58(3):3-20
HAN L, SHI Z Y, XI J R, et al.Research status of ultrasonic vibration assisted machining technology for ceramic matrix composites[J].Tool Engineering, 2024, 58(3):3-20
[10]张园, 康仁科, 刘津廷, 等.超声振动辅助钻削技术综述[J].机械工程学报, 2017, 53(19):33-44
ZHANG Y, TANG R K, LIU J Y, et al.Review of ultrasonic vibration assisted drilling[J].Journal of Mechanical Engineering, 2017, 53(19):33-44
[11]张士宏, 程明, 宋鸿武, 等.航空航天复杂曲面构件精密成形技术的研究进展[J].南京航空航天大学学报, 2020, 52(1):1-11
ZHANG S H, CHENG M, SONG H W, et al.Research progress on precision forming technology for complex curved surface components in aerospace[J].Journal of Nanjing University of Aeronautics and Astronautics, 2020, 52(1):1-11
[12]钟紫鹏, 苏国康, 李俊飞, 等.电解加工大深径比小孔及参数优化[J].西安工业大学学报, 2024, 44(3):263-272
ZHONG Z P, SU G K, LI J F, et al.Electrochemical machining of deep-small holes and parameter optimization[J].Journal of Xi' an Technological University, 2024, 44(3):263-272
[13]彭振龙, 张翔宇, 张德远.航空航天难加工材料高速超声波动式切削方法[J].航空学报, 2022, 43(4):67-85
PENG Z L, ZHANG X Y, ZHANG D Y.High-speed ultrasonic vibration cutting for difficult-to-machine materials in aerospace field[J].Acta Aeronautica et Astronautica Sinica, 2022, 43(4):67-85
[14]辛艳喜, 蔡高参, 胡彪, 等.打印主要成形工艺及其应用进展[J].精密成形工程, 2021, 13(6):156-164
XIN Y X, CAI G S, HU B, et al.Recent development of main process types of 3D printing technology and applicationp[J].Journal of Netshape Forming Engineering, 2021, 13(6):156-164
[15]AHN D G.Direct metal additive manufacturing processes and their sustainable applications for green technology: a review[J].International Journal of Precision Engineering and Manufacturing - Green Technology, 2016, 3(4):381-395
[16]ZHAO G L, ZHAO B, DING W F, et al.Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community: a comparative analysis[J].International Journal of Extreme Manufacturing, 2024, 6(2):022007-
[17]MANIKANDAN N, BALASUBRAMANIAN K, PALANISAMY D, et al.Machinability analysis and anfis modelling on advanced machining of hybrid metal matrix composites for aerospace applications[J].Materials and Manufacturing Processes, 2019, 34(16):1866-1881
[18]黄传真, 刘增文, 刘含莲, 等.先进制造技术概述[J].现代制造技术与装备, 2004, 40(4):3-7
HUANG C Z, LIU Z W, LIU H L, et al.A summary on advanced manufacturing technology[J].Modern Manufacturing Technology and Equipment, 2004, 40(4):3-7
[19]吴良芹.先进制造技术及其发展[J].机械制造与自动化, 2009, 38(1):84-86
WU L Q.Developing of advanced manufacture technology[J].Machine Building and Automation, 2009, 38(1):84-86
[20]PENG Z L, HAN A W, WANG C L, et al.Ultrasonic vibration cutting of advanced aerospace materials: a critical review of in-service functional performance[J].Journal of Intelligent Manufacturing and Special Equipment, 2024, 5(1):137-169
[21]王焱, 王文理.先进刀具技术与航空零件切削加工[J].航空制造技术, 2009, 52(23):38-42
WANG Y, WANG W L.Advanced cutting tool technology for aircraft component machining[J].Aeronautical Manufacturing Technology, 2009, 52(23):38-42
[22]张翔宇, 彭振龙.难加工合金高速高质超声切削加工方法及应用[J].金属加工冷加工, 2023, 74(7):9-15
ZHANG X Y, PENG Z L.High-speed and high-quality ultrasonic cutting method and its application for difficult-to-machine alloys[J].Metal Working (Metal Cutting), 2023, 74(7):9-15
[23]YUI A, LEE H S.Surface grinding with ultra high speed CBN wheel[J].Journal of Materials Processing Technology, 1996, 62(4):393-396
[24]SHIH J, MCSPADDEN S B, MORRIS T O, et al.High speed and high material removal rate grinding of ceramics using the vitreous bond CBN wheel[J].Machining Science and Technology, 2000, 4(1):43-58
[25]HWANG T W, EVANS C J, WHITENTON E P, et al.High speed grinding of silicon nitride with electroplated diamond wheels,part 1: wear and wheel life[J].Journal of Manufacturing Science and Engineering, 2000, 122(1):32-41
[26]CHOUDHURY S K, JAIN V K, GUPTA M.Electrical discharge diamond grinding of high speed steel[J].Machining Science and Technology, 1999, 3(1):91-105
[27]HUANG H, LIU Y C.Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding[J].International Journal of Machine Tools and Manufacture, 2003, 43(8):811-823
[28]RAMESH K, HUANG H, YIN L.Analytical and experimental investigation of coolant velocity in high speed grinding[J].International Journal of Machine Tools and Manufacture, 2004, 44(10):1069-1076
[29]CHEN J Y, SHEN J Y, HUANG H, et al.Grinding characteristics in high speed grinding of engineering ceramics with brazed diamond wheels[J].Journal of Materials Processing Technology, 2010, 210(6):899-906
[30]YANG L, FU Y C, XU J H, et al.Structural design of a carbon fiber-reinforced polymer wheel for ultra-high speed grinding[J].Materials and Design, 2015, 88:827-836
[31]LI Z, DING W F, SHEN L, et al.Comparative investigation on high-speed grinding of TiCpTi–6Al–4V particulate reinforced titanium matrix composites with single-layer electroplated and brazed CBN wheels[J].Chinese Journal of Aeronautics, 2016, 29(5):1414-1424
[32]ZHU Y J, DING W F, RAO Z W, et al.Self-sharpening ability of monolayer brazed polycrystalline CBN grinding wheel during high-speed grinding[J].Ceramics International, 2019, 45(18):24078-24089
[33]NASKAR A, CHOUDHARY A, PAUL S.Wear mechanism in high-speed superabrasive grinding of titanium alloy and its effect on surface integrity[J].Wear, 2020, 462:203475-
[34]LEI X F, XIANG D H, PENG P C, et al.Establishment of dynamic grinding force model for ultrasonic-assisted single abrasive high-speed grinding[J].Journal of Materials Processing Technology, 2022, 300:117420-
[35]宗影影, 王琪伟, 袁林, 等.航空航天复杂构件的精密塑性体积成形技术[J].锻压技术, 2021, 46(9):1-15
ZONG Y Y, WANG Q W, YUAN L, et al.Precision plastic volume forming technology for aerospace complex components[J].Forging and Stamping Technology, 2021, 46(9):1-15
[36]WANG Y L, ZHAO Q L, SHANAG Y J, et al.Ultra-precision machining of Fresnel microstructure on die steel using single crystal diamond tool[J].Journal of Materials Processing Technology, 2011, 211(12):2152-2159
[52]YUAN J L, LYU B H, HANG W, et al.Review on the progress of ultra-precision machining technologies[J].Frontiers of Mechanical Engineering, 2017, 12(2):158-180
[53]LEE J M, KIM Y B, PARK J W.Pulse electrochemical mesomicronano ultraprecision machining technology[J].Journal of Nanoscience and Nanotechnology, 2014, 14(5):4006-
[54]KUMAR P, SINGH P K, KUMAR D, et al.A novel application of micro-EDM process for the generation of nickel nanoparticles with different shapes[J].Materials and Manufacturing Processes, 2017, 32(5):564-572
[55]FU H, ZHOU X Y, WU B, et al.Atomic-scale dissecting the formation mechanism of gradient nanostructured layer on Mg alloy processed by a novel high-speed machining technique[J].Journal of Materials Science and Technology, 2021, 82:227-238
[56]顾宁, 闵光伟, 鲁武, 等.纳米加工技术进展[J].电工电能新技术, 1994, 13(2):18-23
[57]GU N, MIN G W, LU W, et al.Progress in STM nanofabrication technology[J].Advanced Technology of Electrical Engineering, 1994, 13(2):18-23
[58]荣烈润.微机械及其微细加工技术的现状和应用研究[J].机电一体化, 2002, 8(3):11-13
[59]RONG L R.The present situation and applicaton studyof micromechanism (MEMS) and their microfabrication technology[J].Mechatronics, 2002, 8(3):11-13
[60]JEONG Y H, HANYOO B, LEE H U, et al.Deburring microfeatures using micro-EDM[J].Journal of Materials Processing Technology, 2009, 209(14):5399-5406
[61]TANG T, FENG X, HUANG T Q, et al.Research on the combined electrochemical machining and electrical discharge machining technology for closed integer impeller[J].International Journal of Advanced Manufacturing Technology, 2019, 102(9-12):3419-3429
[62]JERZY K, LUCJAN D, KONRAD L, et al.CAE-ECM system for electrochemical technology of parts and tools[J].Journal of Materials Processing Technology, 2000, 107(1):293-299
[63]ARVIND K, HARI S, VINOD K.Study the parametric effect of abrasive water jet machining on surface roughness of Inconel 718 using RSM-BBD techniques[J].Materials and Manufacturing Processes, 2018, 33(13):1483-1490
[64]葛璜.电子束、离子束、光子束纳米微细加工技术的进展[J].仪器仪表学报, 1996, 17(S1):70-74
[65]GE H.Progress in electron beam,ion beam,and photon beam nanomicrofabrication technology[J].Chinese Journal of Scientific Instrument, 1996, 17(S1):70-74
[66]靳晓明, 郭睿智.高压水射流技术在机械制造业的应用[J].中国科技信息, 2012, 24(12):163-164
[67]JIN X M, GUO R Z.The application of high pressure water-jet technology in machinery manufacture[J].China Science and Technology Information, 2012, 24(12):163-164
[68]刘松良.铝合金超声波表面光饰加工技术研究[J].机械设计与制造, 2012, 50(5):277-279
[69]LIU S L.Technology research of aluminum alloy ultrasonic surface polishing process[J].Machinery Design and Manufacture, 2012, 50(5):277-279
[70]PILIPOVI? A, RAOS P, ?ERCER M.Experimental analysis of properties of materials for rapid prototyping[J].International Journal of Advanced Manufacturing Technology, 2009, 40(1-2):105-115
[71]张政, 厉丹彤, 冯小保, 等.基于快速原型的夹具设计[J].机床与液压, 2015, 43(7):124-126
[72]ZHANG Z, LI D T, FENG X B, et al.Fixture design based on RP technology[J].Machine Tool and Hydraulics, 2015, 43(7):124-126
[73]李晓蓓, 安桂华, 李敏贤.快速原型制造技术的发展及在制造业中的应用[J].机电产品开发与创新, 1998, 11(4):34-35
[74]LI X B, AN G H, LI M X.Development of rapid prototype manufacturing (RPM) technology and application in manufacturing industry[J].Development and Innovation of Machinery and Electrical Products, 1998, 11(4):34-35
[75]卢秉恒, 唐平, 李涤尘.激光快速原型制造技术的发展与应用[J].航空制造工程, 1997, 40(7):15-17
[76]LU B H, TANG P, LI D C.Development and application of laser rapid prototype manufacturing technology[J].Aviation Maintenance and Engineering, 1997, 40(7):15-17
[77]陈建环, 马波.快速成形零件制造技术[J].智能制造, 2004, 11(Z1):118-123
[78]CHEN J H, MA B.Rapid prototypingparts manufacturing technology[J].Intelligent Manufacturing, 2004, 11(Z1):118-123
[79]CAVALEIRO D, FIGUEIREDO D, MOURA C W, et al.Machining performance of TiSiN(Ag) coated tools during dry turning of TiAl6V4 aerospace alloy[J].Ceramics International, 2021, 47(8):11799-11806
[80]DOMENICO U.Investigation of surface integrity in dry machining of Inconel 718[J].International Journal of Advanced Manufacturing Technology, 2013, 69(9-12):2183-2190
[81]PAZHANI A, VENKATRAMAN M, ANTHONY X M, et al.Synthesis and characterisation of graphene-reinforced AA 2014 MMC using squeeze casting method for lightweight aerospace structural applications[J].Materials and Design, 2023, 230:111990-
[82]沙小伟, 黎向锋, 左敦稳, 等.飞机起落架内螺纹冷挤压成形过程的研究[J].航空制造技术, 2010, 53(2):75-78
[83]SHA X W, LI X F, ZUO D W, et al.Study on process of cold extrusion forming internal thread of aircraft landing gear[J].Aeronautical Manufacturing Technology, 2010, 53(2):75-78
[84]张文峰, 朱获.电沉积纳米复合材料的研究与应用[J].材料导报, 2003, 17(8):57-60
[85]ZHANG W F, ZHU D.Electrodeposited nanocomposites: research advances and applications[J].Materials Reports, 2003, 17(8):57-60
[86]LIU Q, LI Q, CHEN Z, et al.Study on abrasive belt grinding process assisted by ultrasonic elliptic vibration[J].International Journal of Advanced Manufacturing Technology, 2022, 120(7-8):4647-4661
[87]YI J, PEI K L, LI Z H, et al.Numerical and experimental investigation on temperature field during small-module gear creep feed deep profile grinding[J].International Journal of Advanced Manufacturing Technology, 2024, 132(9-10):4965-4977
[88]WANG D K.Research on surface integrity and its influencing factors in the high-speed cutting of typical aluminumtitaniumnickel alloys: a review[J].International Journal of Advanced Manufacturing Technology, 2023, 127(9-10):4915-4942
[89]ZHANG P, WANG S X, LIN Z Y, et al.Investigation on micro-cutting and chip formation mechanism of CoCrFeNiAlX series high-entropy alloy[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46(3):118-
[90]ZHANG X, CHENG Y T, LV M Q, et al.Study on high-speed vibration cutting of titanium alloy considering cutting edge radii[J].International Journal of Advanced Manufacturing Technology, 2022, 124(10):3327-3342
[91]HAO Z P, WANG X D, FAN Y H.Dynamic behavior and formation mechanism of shear band during high-speed cutting Inconel 718[J].International Journal of Advanced Manufacturing Technology, 2024, 133(5-6):2235-2254
[92]SUN H W, ZOU B, CHEN W, et al.Chatter failure comparison for high-speed milling of aerospace GH4099 with silicon nitride ceramic end mills: a laboratory scale investigation[J].Engineering Failure Analysis, 2024, 157:107891-
[93]WANG X, ZHAO B, DING W F, et al.Wear mechanisms of coated carbide tools during high-speed face milling of Ti2AlNb intermetallic alloys[J].International Journal of Advanced Manufacturing Technology, 2023, 131(5-6):2881-2892
[94]ABBAS A T, AL BAHKALI E A, ALQAHTANI S M, et al.Fundamental investigation into tool wear and surface quality in high-speed machining of Ti6Al4V alloy[J].Materials, 2021, 14(23):7128-
[95]YU W W, MING W W, AN Q L, et al.Wear behavior of SiAlON ceramic tool and its effects during high-speed cutting[J].Ceramics International, 2023, 49(16):26694-26706
[96]ZHANG G Q, ZHANG J J, FAN G H, et al.The effect of chip formation on the cutting force and tool wear in high-speed milling Inconel 718[J].International Journal of Advanced Manufacturing Technology, 2023, 127(1-2):335-348
[97]TU L Q, LIN L L, LIU C, et al.Tool wear characteristics analysis of CBN cutting tools in high-speed turning of Inconel 718[J].Ceramics International, 2023, 49(1):635-658
[98]FANG W, WANG J M, CAI F, et al.Effects of multilayer structure on impacting fatigue resistance and high-speed dry cutting performance against Ti-6Al-4V of AlTiN/AlTiBN multilayer coatings[J].Tribology International, 2024, 192:109258-
[99]WANG D Q, YIN L, H?NEL A, et al.Cutting performance of binderless nano-polycrystalline CBN and PCBN milling tools for high-speed milling of hardened steel[J].Ceramics International, 2023, 49(22):34757-34773
[100]ZHANG L F, ZHANG X G.A comparative experimental study of unidirectional CFRP high-speed milling in up and down milling with varied angles[J].Journal of Manufacturing Processes,, 2023, 101:1147-1157
[101]LI S C, XIAO G J, ZHUO X Q, et al.Fatigue performance and failure mechanism of ultrasonic-assisted abrasive-belt-ground Inconel 718[J].International Journal of Fatigue, 2023, 168:107406-
[102]LI X, YANG S L, LU Z H, et al.Influence of ultrasonic peening cutting on surface integrity and fatigue behavior of Ti-6Al-4V specimens[J].Journal of Materials Processing Technology, 2019, 275:116386-
[103]CHANG B Q, YI Z X, ZHANG F, et al.A comprehensive research on wear resistance of GH4169 superalloy in longitudinal-torsional ultrasonic vibration side milling with tool wear and surface quality[J].Chinese Journal of Aeronautics, 2024, 37(4):556-573
[104]CHANG B Q, YI Z X, DUAN L, et al.Surface wear resistance and microstructure characteristic in longitudinal–torsional ultrasonic vibration side milling of GH4169 superalloy[J].Applied Surface Science, 2024, 649:159075-
[105]PENG Z L, ZHANG X Y, ZHANG Y, et al.Wear resistance enhancement of Inconel 718 via high-speed ultrasonic vibration cutting and associated surface integrity evaluation under high-pressure coolant supply[J].Wear, 2023, 530-531:205027-
[106]SHU X D, YE C Q, WANG J T, et al.Analysis and prospect of precision plastic forming technologies for production of high-speed-train hollow axles[J].Metals, 2023, 13(1):145-
[107]华林, 冯玮, 韩星会, 等.齿轮精密塑性成形理论技术装备研究与应用[J].塑性工程学报, 2024, 31(4):56-73
[108]HUA L, FENG W, HAN X H, et al.Research and application of theory technology and equipment on gear precision plastic forming[J].Journal of Plasticity Engineering, 2024, 31(4):56-73
[109]张博威, 杨斌, 单垄垄, 等.航空航天高精密法兰盘的加工[J].金属加工冷加工, 2023, 74(4):38-41
[110]ZHANG B W, YANG B, SHAN L L, et al.Machining of aerospace high precision flanges[J].Metal Working (Metal Cutting), 2023, 74(4):38-41
[111]骆静, 张婧, 桓思颖, 等.内花键双联齿轮的精密塑性成形[J].锻压技术, 2022, 47(12):103-108
[112]LUO J, ZHANG J, HUAN S Y, et al.Precision plastic forming of internal spline double gear[J].Forging and Stamping Technology, 2022, 47(12):103-108
[113]NING P, ZHAO J, JI S, et al.Surface defects formation mechanism of Mg2Si/Al composites by micro cutting[J].Precision Engineering, 2024, 88:324-340
[114]REGAIEG A, BELGUITH R, SAI L.Enhanced modeling of instantaneous uncut chip thickness and cutter workpiece engagement region in 5 axis ball end milling: case of the tilt orientation[J].Journal of Manufacturing Processes, 2024, 121:289-311
[115]de OLIVEIRA F B, RODRIGUES A R, COELHO R T, et al.Size effect and minimum chip thickness in micromilling[J].International Journal of Machine Tools and Manufacture, 2015, 89:39-54
[116]张欣欣, 许金凯, 于化东.高速微铣削难加工材料切削参数优化试验研究[J].组合机床与自动化加工技术, 2015, 57(8):19-23
[117]ZHANG X X, XU J K, YU H D.The experiment research of cutting parameters optimization in high-speed micro-milling hard processing materials[J].Modular Machine Tool and Automatic Manufacturing Technique, 2015, 57(8):19-23
[118]田璐, 韩旭炤, 高峰, 等.微细铣削技术研究综述[J].机械强度, 2019, 41(03):618-624
[119]TIAN L, HAN X Z, GAO F, et al.Review of micro-milling technology[J].Journal of Mechanical Strength, 2019, 41(03):618-624
[120]LIU F Y, CHEN T, DUAN Z Y, et al.Ultrasonic assisted pecking drilling process for CFRP/Ti laminated materials[J].Journal of Manufacturing Processes, 2023, 108:834-851
[121]罗军, 李楠, 王曦, 等.纳米压痕法测量航空发动机关键材料残余应力的研究进展[J].材料导报, 2024, 38(11):220-232
[122]LUO J, LI N, WANG X, et al.Research progress of nanoindentation methods for measuring residual stress in critical materials of aero-engine[J].Materials Reports, 2024, 38(11):220-232
[123]QIN F, LIU B Q, ZHU L W, et al.phase modulated monolayer supercritical lens[J].Nature Communications, 2021, 12(32):1-9
[124]ZHANG P, XIAO C, CHEN C, et al.Effect of abrasive particle degradation on tribo-chemical wear of monocrystalline silicon[J].Wear, 2019, 426-427:1240-1245
[125]CHEN L, WEN J L, ZHANG P, et al.Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions[J].Nature Communications, 2018, 9:1542-
[126]LIU Z H, GONG J, XIAO C, et al.Temperature-dependent mechanochemical wear of silicon in water: the role of Si-OH surfacial groups[J].Langmuir: the ACS Journal of Surfaces and Colloids, 2019, 35(24):7735-7743
[127]GUO J, GONG J, SHI P F, et al.Study on the polishing mechanism of pH-dependent tribochemical removal in CMP of CaF2 crystal[J].Tribology International, 2020, 150:106370-
[128]KENTA A, AKIHISA K, HIDEKAZU M, et al.Highly resolved scanning tunneling microscopy study of Si(001) surfaces flattened in aqueous environment[J].Surface Science, 2006, 600(15):185-188
[129]HAN W, MATHEW P T, KOLAGATLA S, et al.Toward single-atomic-layer lithography on highly oriented pyrolytic graphite surfaces using AFM-based electrochemical etching[J].Nanomanufacturing and Metrology, 2022, 5(1):32-38
[130]JOHNSON R W, HULTQVIST A, BENT S F.A brief review of atomic layer deposition: from fundamentals to applications[J].Materials Today, 2014, 17(5):236-246
[131]WILLKE P, PAUL W, NATTERER F D, et al.Probing quantum coherence in single-atom electron spin resonance[J].Science Advances, 2018, 4(2):1543-
[132]宋凤麒, 戴庆.原子制造:物质科学的未来技术[J].物理, 2023, 52(6):371-380
[133]SONG F L, DAI Q.Atom manufacturing: a future technique of physical sciences[J].Physics, 2023, 52(6):371-380
[134]LIAO M Z, NICOLINI P, DU L J, et al.UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures[J].Nature Materials, 2022, 21(1):47-53
[135]LI Y C, QI Z L, LAN Y X, et al.Self-aligned patterning of tantalum oxide on CuSiO2 through redox-coupled inherently selective atomic layer deposition[J].Nature Communications, 2023, 14(1):4493-
[136]WANG J S, FANG F Z, AN H J, et al.Laser machining fundamentals: micro, nano, atomic and close-to-atomic scales[J].International Journal of Extreme Manufacturing, 2023, 5:012005-
[137]ANDRIUS ?, UGN? G, SAUL? S, et al.The ultrafast burst laser ablation of metals: speed and quality come together[J].Optics and Laser Technology, 2025, 180:111458-
[138]KONG X J, WANG Y D, LIU X L, et al.Research on the removal mechanism and surface damage of laser assisted cutting of CFRP materials[J].Journal of Manufacturing Processes, 2024, 124:196-211
[139]TIAN J Z, YE M, SONG X D, et al.Effect of low temperature on fatigue crack propagation behavior of QP980 steel and laser-welded joint[J].Materials Letters, 2024, 377:137326-
[140]LI J J, WU H Y, LIU H X, et al.Surface and property characterization of selective laser-melted Ti-6Al-4V alloy after laser polishing[J].International Journal of Advanced Manufacturing Technology, 2023, 128(1-2):703-714
[141]苏铭.微细电火花加工机理研究[J].一重技术, 2022, 61(1):47-50
[142]SU M.Research on micro EDM working principle[J].CFHI Technology, 2022, 61(1):47-50
[143]周义涛, 沈云, 奚天鹏, 等.基于电火花-电解复合加工的钨材料微小孔加工研究[J].机械制造与自动化, 2023, 52(4):41-43
[144]ZHOU Y T, SHEN Y, XI T, et al.Micro hole machining of tungsten materials based on EDM-electrolysis composite machining[J].Machine Building and Automation, 2023, 52(4):41-43
[145]REN M Z, ZHU D, ZHOU X Q, et al.Effects of electrochemical machining on high-cycle fatigue of Inconel 718 blades[J].Engineering Failure Analysis, 2024, 165:108838-
[146]REN M Z, ZHU D, ZHOU X Q, et al.Surface quality enhancement in ultrasonic vibration-assisted electrochemical machining[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 703(P1):135188-
[147]JEONG J U, LEE K K, AHN D G, et al.Study of surface roughness change of AlSi10Mg based on selective laser melting (SLM) using electro-polishing technique[J].Journal of Mechanical Science and Technology, 2024, 38:4579-4585
[148]章继.超声波焊接加工质量受焊头压力的影响分析[J].新型工业化, 2020, 10(7):95-97
[149]ZHANG J.Analysis of the influence of welding head pressure on the quality of ultrasonic welding processing[J].Journal of New Industrialization, 2020, 10(7):95-97
[150]叶涛, 李骏, 陈家欣, 等.焊接电流对超声波焊接加工质量的影响[J].机电工程技术, 2019, 48(10):54-56
[151]YE T, LI J, CHEN J X, et al.Effect of welding current on ultrasonic welding quality[J].Mechanical and Electrical Engineering Technology, 2019, 48(10):54-56
[152]AO S S, LI C J, ZHANG W, et al.Microstructure evolution and mechanical properties of Al/Cu ultrasonic spot welded joints during thermal processing[J].Journal of Manufacturing Processes, 2019, 41:307-314
[153]刘松良.铝合金超声波表面光饰加工技术研究[J].机械设计与制造, 2012, 50(5):277-279
[154]LIU S L.Technology research of aluminum alloy ultrasonic surface polishing process[J].Machinery Design and Manufacture, 2012, 50(5):277-279
[155]刘鸿智.超声波在机械研磨加工中的应用[J].河南科技, 2018, 37(5):62-63
[156]LIU H Z.The application of ultrasonic in mechanical grinding[J].Henan Science and Technology, 2018, 37(5):62-63
[157]JIAO F, ZHAO B.Research on ultrasonic aided fixed-abrasive lapping technology for engineering ceramic scylindrical part[C]//11th International Manufacturing Science and Engineering Conference. US: Blacksburg, 2016, 3.
[158]GUO C, ZHU X J.Effect of ultrasound on dynamics characteristic of the cavitation bubble in grinding fluids during honing process[J].Ultrasonics, 2018, 84:13-24
[159]GENG D X, TENG Y D, LIU Y H, et al.Experimental study on drilling load and hole quality during rotary ultrasonic helical machining of small-diameter CFRP holes[J].Journal of Materials Processing Technology, 2019, 270:195-205
[160]SHEN J Y, ZHU X, CHEN J B, et al.Investigation on the edge chipping in ultrasonic assisted sawing of monocrystalline silicon[J].Micromachines, 2019, 10(9):616-
[161]YAO G, ZHANG D Y, GENG D X, et al.Novel ultrasonic vibration-assisted electrosurgical cutting system for minimizing tissue adhesion and thermal injury[J].Materials and Design, 2021, 201(1):109528-
[162]胡明钦.超声波在工程陶瓷中加工微孔的研究[J].黑龙江科技信息, 2011, 15(11):2-
[163]HU M X.Research on ultrasonic processing of micro pores in engineering ceramics[J].Scientific and Technological Innovation, 2011, 15(11):2-
[164]GENG D X, LU Z H, YAO G, et al.Cutting temperature and resulting influence on machining performance in rotary ultrasonic elliptical machining of thick CFRP[J].International Journal of Machine Tools and Manufacture, 2017, 123:160-170
[165]YU T B, WANG Z H, GUO X P, et al.Effect of ultrasonic vibration on polishing monocrystalline silicon: surface quality and material removal rate[J].International Journal of Advanced Manufacturing Technology, 2019, 103(5-8):2109-2119
[166]DASAEV M, KALAKUTSKAYA O, ZILOVA O, et al.Effect of ultrasonic cleaning after laser texturizing of surface of AISI 316L steel on the degree of wetting and corrosion resistance[J].Coatings, 2023, 13(12):266136589-
[167]王艳华, 樊娴, 徐永新.利用超声波测厚仪控制铸件壁厚一致性的加工工艺[J].金属加工冷加工, 2014, 65(01):78-
[168]WANG Y H, FAN X, XU Y X.Processing technology for controlling the consistency of casting wall thickness using ultrasonic thickness gauge[J].Metal Working (Metal Cutting), 2014, 65(01):78-
[169]DARIUSZ U, GRZEGORZ P, ARTUR W, et al.Inspection of spot welded joints with the use of the ultrasonic surface wave[J].Materials, 2023, 16(21):7029-
[170]张德远, 黄志勇, 张翔宇.超声加工的技术发展与行业应用[J].电加工与模具, 2021, 56(4):1-14
[171]ZHANG D Y, HUANG Z Y, ZHANG X Y.Technological development industries and applications of ultrasonic machining[J].Electromachining and Mould, 2021, 56(4):1-14
[172]ZHOU R, CAO Y P, SHI W D, et al.Experimental study on surface erosion of Grade-A marine steel with different curvatures by ultra-high pressure water jet[J].Journal of Materials Research and Technology, 2024, 31:3025-3034
[173]SUN H, HU M Y, JIANG G H, et al.Micro-nano twins appearing in ultrafine-grained Ti–6Al–4V alloy induced by high-pressure water jet technology[J].Materials Research Express, 2022, 9(10):106514-
[174]MONIKA S B, WOJCIECH K, ?UKASZ B, et al.Analysis of the process and results of high-pressure abrasive water jet multilayer cutting of electrical steel[J].Materials, 2023, 17(1):94-
[175]曹丽亭, 赵韡, 朱犇犇.磨料水射流切断面的温度特征试验研究[J].机械设计与制造, 2023, 61(5):51-53
[176]CAO L T, ZHAO W, ZHU B B..Experimental study on temperature characteristics of abrasive water jet cutting surface[J].Machinery Design and Manufacture, 2023, 61(5):51-53
[177]YANG J L, SONG J H, PAN J Q, et al.Microstructure evolution and strengthening mechanisms of electron beam welded 2219 aluminum alloy plate after hot spinning and heat treatment[J].Journal of Materials Research and Technology, 2024, 28:411-419
[178]WANG H J, RAN X Z, WANG H C, et al.Microstructure formation mechanism and mechanical properties of super-thickness TC11 titanium alloy joint by electron beam welding and laser additive manufacturing hybrid connection technology[J].Journal of Materials Processing Technology, 2024, 331:118502-
[179]贺怀志, , 魏鎏英.工艺参数设置和厚度对电子束熔融加工--合金微观结构的影响英文[J].稀有金属材料与工程, 2021, 50(2):408-415
[180]HE H Z, SAFDAR A, WEI L Y.Effect of process parameter settings and thickness on microstructures of ebm produced Ti-6Al-4V alloy[J].Rare Metal Materials and Engineering, 2021, 50(2):408-415
[181]FENG Z Y, WANG J, ZHANG F J, et al.Effect of high current pulsed electron beam on surface microstructure and properties of cold-rolled austenitic stainless steel[J].Journal of Materials Research and Technology, 2024, 29:1183-1193
[182]白如圣, 谭毅, 崔弘阳, 等.电子束熔炼功率对合金微观组织、偏析和γ′相析出行为的影响[J].金属学报, 2024, 60(9):1189-1199
[183]BAI R S, TAN Y, CUI H Y, et al.Effect of electron beam smelting power on microstructure,segregation,and γ′ phase precipitation behavior of GH4068 alloy[J].Acta Metallurgica Sinica, 2024, 60(9):1189-1199
[184]WANG H B, JI X L, JIA B.Study on the corrosion resistance of thermal sprayed aerospace coatings under the action of high current pulsed electron beam[J].Journal of Physics: Conference Series, 2024, 2762(1):012085-
[185]ALEXANDER M, MARINA V, ENVER M, et al.Plasma-beam processing of tools made of sialon dielectric ceramics to increase wear resistance when cutting nickel–chromium alloys[J].Coatings, 2022, 12(4):469-
[186]ZHOU G Q, TIAN Y, SHI F, et al.Low-energy pulsed ion beam technology with ultra-high material removal resolution and widely adjustable removal efficiency[J].Micromachines, 2021, 12(11):1370-
[187]王永刚, 肖正航, 王鹏.光学元件离子束抛光去除特性研究[J].航天制造技术, 2013, 56(3):8-11
[188]WANG Y G, XIAO Z H, WANG P.The removal characteristics of ion beam polishing optical elements[J].Aerospace Manufacturing Technology, 2013, 56(3):8-11
[189]THOMAS P A, AAHLADA P K, KIRAN N S, et al.A review on transition in the manufacturing of mechanical components from conventional techniques to rapid casting using rapid prototyping[J].Materials Today: Proceedings, 2018, 5(5):11990-12002
[190]王磊, 卢秉恒.我国增材制造技术与产业发展研究[J].中国工程科学, 2022, 24(4):202-211
[191]WANG L, LU B H.Development of additive manufacturing technology and industry in china[J].Strategic Study of CAE, 2022, 24(4):202-211
[192]梁朝阳, 张安峰, 梁少端, 等.高性能钛合金激光增材制造技术的研究进展[J].应用激光, 2017, (3):452-458
[193]LIANG C Y, ZHANG A F, LIANG S R, et al.Research developments of high-performance titanium alloy by laser additive manufacturing technology[J].Applied Laser, 2017, (3):452-458
[194]杨全占, 魏彦鹏, 高鹏, 等.金属增材制造技术及其专用材料研究进展[J].材料导报, 2016, 30(s1):107-111
[195]YANG Q Z, WEI Y P, GAO P, et al.Research progress of metal additive manufacturing technologies and related materials[J].Materials Reports, 2016, 30(S1):107-111
[196]董世运, 张幸红, 徐滨士, 等.激光熔覆铜基自生复合材料设计及其涂层研究[J].哈尔滨工业大学学报, 2003, 35(2):160-
[197]DONG S Y, ZHANG X H, XU B S, et al.Design of in-situ copper-based composite by laser cladding and study on its coatings[J].Journal of Harbin Institute of Technology, 2003, 35(2):160-
[198]GU D D, SHI X Y, POPRAWE R, et al.Material-structure-performance integrated laser-metal additive manufacturing[J].Science, 2021, 372(6545):-
[199]李涤尘, 鲁中良, 田小永, 等.增材制造——面向航空航天制造的变革性技术[J].航空学报, 2022, 43(4):22-38
[200]LI D C, LU Z L, TIAN X Y, et al.Additive manufacturing——revolutionary technology for leading aerospace manufacturing[J].Acta Aeronautica et Astronautica Sinica, 2022, 43(4):22-38
[201]TANG X P, CHEN X H, SUN F J, et al.The current state of CuCrZr and CuCrNb alloys manufactured by additive manufacturing: a review[J].Materials and Design, 2022, 224:111419-
[202]刘效含.快速原型制造技术的发展趋势及应用[J].黑龙江科学, 2018, 9(6):32-33
[203]LIU X H.Development trend and application of rapid prototyping technology[J].Heilongjiang Science, 2018, 9(6):32-33
[204]冀永曼.绿色设计理念在机械制造中的应用[J].农机使用与维修, 2023, 46(11):53-55
[205]JI Y M.The application of green design concept in mechanical engineering[J].Agricultural Machinery Using and Maintenance, 2023, 46(11):53-55
[206]向兵飞, 徐明, 熊勇, 等.大型航空薄壁零件精确绿色制造技术研究[J].组合机床与自动化加工技术, 2015, 57(3):134-137
[207]XIANG B F, XU M, XIONG Y, et al.Research on precision and greenhouse manufacturing technology for large aircraft panels[J].Modular Machine Tool and Automatic Manufacturing Technique, 2015, 57(3):134-137
[208]刘爱平, 林仁伟, 陈壁茂.民用飞机复合材料结构在位修理环境控制方法研究[J].航空维修与工程, 2021, 66(1):60-62
[209]LIU A P, LIN R W, CHEN B M.Study on an environmental control method for in-site repair of civil aircraft composite structure[J].Aviation Maintenance and Engineering, 2021, 66(1):60-62
[210]张国庆, 滕超逸.航空航天先进结构材料技术现状及发展趋势[J].航空材料学报, 2024, 44(2):1-12
[211]ZHANG G Q, TENG C Y.Current status and development trend of advanced structural materials technology in aerospace field[J].Journal of Aeronautical Materials, 2024, 44(2):1-12
[212]倪楠楠, 卞凯, 夏璐, 等.先进复合材料在无人机上的应用[J].航空材料学报, 2019, 39(5):45-60
[213]NI N N, BIAN K, XIA L, et al.Application of advanced composite materials for UAV[J].Journal of Aeronautical Materials, 2019, 39(5):45-60
[214]黄斌达, 齐雯雯, 朱明熙, 等.航空机载产品设计制造一体化研制平台的开发[J].机床与液压, 2020, 48(9):61-65
[215]HUANG B D, QI W W, ZHU M X, et al.Development of integrated development platform for design and manufacturing of aviation airborne products[J].Machine Tool and Hydraulics, 2020, 48(9):61-65
[216]蒋敏, 余志强, 王攀.航空产品设计制造一体化创新研制关键技术[J].航空制造技术, 2019, 62(22):95-101
[217]JIANG M, YU Z Q, WANG P.Key technologies of innovative development for aviation product with integration of design and manufacturing[J].Aeronautical Manufacturing Technology, 2019, 62(22):95-101
文章导航

/