[1]. BUBECK S, CHANDRASEKARAN V, ELDAN R, et al. Sparks of artificial general intelligence: Early experiments with gpt-4[J]. arXiv preprint arXiv: 2303.12712, 2023.
[2]. 王亚珅, 方勇, 江昊, 等. 2023年生成式人工智能技术主要发展动向分析[J]. 无人系统技术, 2024, 7(02): 101-112.
WANG Y K, FANG Y, JIANG H, et al. Main devel-opment trends of generative artificial intelligence technology in 2023[J]. Unmanned Systems Technolo-gy, 2024, 7(02): 101-112.
[3]. OOI K B, TAN G W H, AL-EMRAN M, et al. The potential of generative artificial intelligence across disciplines: Perspectives and future directions[J]. Journal of Computer Information Systems, 2023: 1-32.
[4]. WANG H C, FU T F, DU Y Q, et al. Scientific dis-covery in the age of artificial intelligence[J]. Nature, 2023, 620(7972): 47-60.
[5]. 陈树生, 贾苜梁, 刘衍旭, 等. 变体飞行器变形方式及气动布局设计关键技术研究进展[J]. 航空学报, 2024, 45(6): 629595.
CHEN S S, JIA M L, LIU Y X, et al. Deformation modes and key technologies of aerodynamic layout design for morphing aircraft: Review[J]. Acta Aero-nautica et Astronautica Sinica, 2024, 45(6): 629595. (in Chinese)
[6]. KINGMA D P, WELLING M. Auto-encoding varia-tional bayes[J]. arXiv preprint arXiv:1312.6114, 2013.
[7]. GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J]. Advances in neu-ral information processing systems, 2014, 27.
[8]. SOHL-DICKSTEIN J, WEISS E, Maheswaranathan N, et al. Deep unsupervised learning using nonequilib-rium thermodynamics[C]//International conference on machine learning. PMLR, 2015: 2256-2265.
[9]. VASWANI A, Shazeer N, Parmar N, et al. Attention is all you need[J]. arXiv preprint arXiv:1706.03762, 2017.
[10]. LECUN Y, CHOPRA S, HADSELL R, et al. A tutori-al on energy-based learning[J]. Predicting structured data, 2006, 1(0).
[11]. KINGMA D P, DHARIWAL P. Glow: Generative flow with invertible 1x1 convolutions[J]. Advances in neural information processing systems, 2018, 31.
[12]. MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. Nerf: Representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65(1): 99-106.
[13]. TU W J, DENG W J, GEDEON T. A closer look at the robustness of contrastive language-image pre-training (clip)[J]. Advances in Neural Information Processing Systems, 2024, 36.
[14]. 任亚琪. 基于深度学习的scRNA-seq数据降维和聚类方法研究[D]. 长沙: 湖南大学, 2022.
REN Y Q. Research on dimensionality reduction and clustering method of scRNA-seq data based on deep learning[D]. Changsha: Hunan University, 2022 (in Chinese).
[15]. 郭秋燕, 胡磊, 代劲. 基于云模型的变分自编码器数据压缩方法[J]. 电子技术应用, 2023, 49(10): 96-99.
GUO Q Y, HU L, DAI J. Variational autoencoder data compression algorithm based on cloud model[J]. Computer Technology and Its Applications, 2023, 49(10): 96-99 (in Chinese).
[16]. 杨涛. 基于变分自编码器的文本生成模型研究[D]. 重庆: 西南大学, 2022.
YANG T. Research on text generation model based on variational auto-encoder[D]. Chongqing: Southwest University, 2022 (in Chinese).
[17]. 张志昂, 廖光忠. 改进变分自编码器的工业时序数据异常检测[J]. 计算机工程与设计, 2024, 45(01): 17-23.
ZHANG Z A, LIAO G Z. Anomaly detection of in-dustrial time series data based on variational autoen-cod-er[J]. Computer Engineering and Design, 2024, 45(01): 17-23 (in Chinese).
[18]. 谢胜利, 陈泓达, 高军礼, 等. 基于分布对齐变分自编码器的深度多视图聚类[J]. 计算机学报, 2023, 46(05): 945-959.
XIE S L, CHEN H D, GAO J L, et al. Deep multi-view clustering based on distribution aligned varia-tional autoencoder[J]. Chinese Journal of Computers, 2023, 46(05): 945-959 (in Chinese).
[19]. HIGGINS I, MATTHEY L, PAL A, et al. beta-vae: Learning basic visual concepts with a constrained var-ia-tional framework[J]. ICLR (Poster), 2017, 3.
[20]. BURGESS C P, HIGGINS I, PAL A, et al. Under-standing disentangling in beta-VAE[J]. arXiv preprint arXiv: 1804.03599, 2018.
[21]. RAMACHANDRA G. Least square variational Bayesian autoencoder with regularization[J]. arXiv preprint arXiv:1707.03134, 2017.
[22]. TOLSTIKHIN I, BOUSQUET O, GELLY S, et al. Wasserstein auto-encoders[J]. arXiv preprint arXiv: 1711.01558, 2017.
[23]. SOHN K, LEE H, YAN X C. Learning structured output representation using deep conditional genera-tive models[J]. Advances in neural information pro-cessing systems, 2015, 28.
[24]. BAO J M, CHEN D, WEN F, et al. CVAE-GAN: fine-grained image generation through asymmetric train-ing[C]//Proceedings of the IEEE international confer-ence on computer vision. 2017: 2745-2754.
[25]. SHEN D H, CELIKYILMAZ A, ZHANG Y Z, ET AL. Towards generating long and coherent text with multi-level latent variable models[J]. arXiv preprint arXiv:1902.00154, 2019.
[26]. LI R Z, ZHANG Y F, CHEN H X. Physically inter-pretable feature learning of supercritical airfoils based on variational autoencoders[J]. AIAA Journal, 2022, 60(11): 6168-6182.
[27]. VAN DEN OORD A, VINYALS O. Neural discrete representation learning[J]. Advances in neural infor-mation processing systems, 2017, 30.
[28]. RAZAVI A, VAN DEN OORD A, Vinyals O. Gener-ating diverse high-fidelity images with vq-vae-2[J]. Advances in neural information processing systems, 2019, 32.
[29]. 罗佳, 黄晋英. 生成式对抗网络研究综述[J]. 仪器仪表学报, 2019, 40(03): 74-84.
LUO J, HUANG J Y. Generative adversarial network: an overview[J]. Chinese Journal of Scientific In-strument, 2019, 40(03): 74-84 (in Chinese).
[30]. 张营营. 生成对抗网络模型综述[J]. 电子设计工程, 2018, 26(05): 34-37+43.
ZHANG Y Y. A survey on generative adversarial net-works[J]. Electronic Design Engineering, 2018, 26(05): 34-37+43 (in Chinese).
[31]. 龚颖, 许文韬, 赵策, 等. 生成对抗网络在图像修复中的应用综述[J]. 计算机科学与探索, 2024, 18(03): 553-573.
GONG Y, XU W T, ZHAO C, et al. Review of appli-cation of generative adversarial networks in image res-toration[J]. Journal of Frontiers of Computer Sci-ence and Technology, 2024, 18(03): 553-573 (in Chi-nese).
[32]. 张彬, 周粤川, 张敏, 等. 生成对抗网络改进角度与应用研究综述[J]. 计算机应用研究, 2023, 40(03): 649-658.
ZHANG B, ZHOU Y C, ZHANG M, et al. Review of research on improvement and application of genera-tive adversarial networks[J]. Application Research of Computers, 2023, 40(03): 649-658 (in Chinese).
[33]. Nowozin S, Cseke B, Tomioka R. f-gan: Training generative neural samplers using variational diver-gence minimization[J]. Advances in neural infor-mation processing systems, 2016, 29.
[34]. MAO X D, LI Q, XIE H R, et al. Least squares gener-ative adversarial networks[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2794-2802.
[35]. ZHAO J B, MATHIEU M, LECUN Y. Energy-based generative adversarial network[J]. arXiv preprint arXiv:1609.03126, 2016.
[36]. ARJOVSKY M, CHINTALA S, BOTTOU L. Wasser-stein generative adversarial net-works[C]//International conference on machine learn-ing. PMLR, 2017: 214-223.
[37]. GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein gans[J]. Advances in neural information processing systems, 2017, 30.
[38]. Qi G J. Loss-sensitive generative adversarial networks on lipschitz densities[J]. International Journal of Computer Vision, 2020, 128(5): 1118-1140.
[39]. ODENA A. Semi-supervised learning with generative adversarial networks[J]. arXiv preprint arXiv: 1606. 01583, 2016.
[40]. MIRZA M, OSINDERO S. Conditional Generative Adversarial Nets[J]. arXiv preprint arXiv: 1411.1784, 2014.
[41]. CHEN X, DUAN Y, HOUTHOOFT R, et al. Infogan: Interpretable representation learning by information maximizing generative adversarial nets[J]. Advances in neural information processing systems, 2016, 29.
[42]. ZHANG H, XU T, LI H S, et al. Stackgan: Text to photo-realistic image synthesis with stacked genera-tive adversarial networks[C]//Proceedings of the IEEE international conference on computer vision. 2017: 5907-5915.
[43]. ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2223-2232.
[44]. TOLSTIKHIN I O, GELLY S, BOUSQUET O, et al. Adagan: Boosting generative models[J]. Advances in neural information processing systems, 2017, 30.
[45]. GHOSH A, KULHARIA V, NAMBOODIRI V P, et al. Multi-agent diverse generative adversarial net-works[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 8513-8521.
[46]. DURUGKAR I, GEMP I, MAHADEVAN S. Genera-tive multi-adversarial networks[J]. arXiv preprint arXiv:1611.01673, 2016.
[47]. RADFORD A, METZ L, CHINTALA S. Unsuper-vised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv:1511.06434, 2015.
[48]. LARSEN A B L, S?NDERBY S K, LAROCHELLE H, et al. Autoencoding beyond pixels using a learned similarity metric[C]//International conference on ma-chine learning. PMLR, 2016: 1558-1566.
[49]. ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial net-works[C]//International conference on machine learn-ing. PMLR, 2019: 7354-7363.
[50]. ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial net-works[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1125-1134.
[51]. 王正龙, 张保稳. 生成对抗网络研究综述[J]. 网络与信息安全学报, 2021, 7(4): 68-85.
WANG Z L, ZHANG B W. Survey of generative ad-versarial network[J]. Chinese Journal of Network and Information Security, 2021, 7(4): 68-85 (in Chinese).
[52]. HO J, JAIN A, ABBEEL P. Denoising diffusion prob-abilistic models[J]. Advances in neural information processing systems, 2020, 33: 6840-6851.
[53]. CROITORU F A, HONDRU V, IONESCU R T, et al. Diffusion models in vision: A survey[J]. IEEE Trans-actions on Pattern Analysis and Machine Intel-ligence, 2023, 45(9): 10850-10869.
[54]. SONG J M, MENG C L, ERMON S. Denoising diffu-sion implicit models[J]. arXiv preprint arXiv:2010.02502, 2020.
[55]. ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 10684-10695.
[56]. NICHOL A Q, DHARIWAL P. Improved denoising diffusion probabilistic models[C]//International con-fer-ence on machine learning. PMLR, 2021: 8162-8171.
[57]. DHARIWAL P, NICHOL A. Diffusion models beat gans on image synthesis[J]. Advances in neural infor-mation processing systems, 2021, 34: 8780-8794.
[58]. HO J, SALIMANS T. Classifier-free diffusion guid-ance[J]. arXiv preprint arXiv:2207.12598, 2022.
[59]. SONG Y, ERMON S. Generative modeling by esti-mating gradients of the data distribution[J]. Advances in neural information processing systems, 2019, 32.
[60]. SONG Y, SOHL-DICKSTEIN J, KINGMA D P, et al. Score-based generative modeling through stochastic differential equations[J]. arXiv preprint arXiv: 2011. 13456, 2020.
[61]. DOSOVITSKIY A , BEYER L , KOLESNIKOV A ,et al.An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[C]//International Confer-ence on Learning Representations, 2021.
[62]. LIU Z, LIN Y T, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted win-dows[J]. 2021.DOI:10.48550/arXiv.2103.14030.
[63]. 唐志共, 朱林阳, 向星皓, 等. 智能空气动力学若干研究进展及展望[J]. 空气动力学学报, 2023, 41(7): 1?35.
TANG Z G, ZHU L Y, XIANG X H, et al. Some re-search progress and prospect of Intelligent Aerody-namics[J]. Acta Aerodynamica Sinica, 2023, 41(7): 1?35. (in Chinese)
[64]. MASTERS D A, TAYLOR N J, RENDALL T, et al. Review of aerofoil parameterisation methods for aer-odynamic shape optimisation[C]//53rd AIAA aero-space sciences meeting. 2015: 0761.
[65]. Sun J H, Song W B. A Unified Learning Model for Airfoil Geometry Fitting and Efficient Optimiza-tion[C]//AIAA SCITECH 2023 Forum. 2023: 2129.
[66]. 余婧, 蒋安林, 刘亮, 等. 基于PCA降维的气动外形参数化方法[J]. 航空学报, 2024, 45(10): 67-86.
YU J, JIANG A L, LIU L, et al. PCA aerodynamic geometry parametrization method[J]. Acta Aeronauti-ca et Astronautica Sinica, 2024, 45(10): 129125 (in Chinese).
[67]. WU X J, ZHANG W W, PENG X H, et al. Bench-mark aerodynamic shape optimization with the POD-based CST airfoil parametric method[J]. Aerospace Science and Technology, 2019, 84: 632-640.
[68]. 金世轶, 陈树生, 杨华, 等. 基于数据挖掘的翼型气动隐身多学科分析[J]. 航空动力学报, 2024. (网上发表)
[69]. 陈树生, 金世轶, 林家豪, 等. 一种基于数据挖掘的翼型气动隐身设计规则提取方法[P]. 中国: CN202311585346.
[70]. JIN S Y, CHEN S S, FENG C, et al. Deep learning for airfoil aerodynamic-electromagnetic coupling optimi-zation with random forest[J]. Physics of Fluids, 2024, 36: 017110.
[71]. KANG Y E, LEE D, YEE K. Physically interpretable airfoil parameterization using variational autoencod-er-based generative modeling[C]//AIAA SCITECH 2024 Forum. 2024: 0685.
[72]. SWANNET K, VARRIALE C, DOAN A K. Towards Universal Parameterization: Using Variational Auto-encoders to Parameterize Airfoils[C]//AIAA SCITECH 2024 Forum. 2024: 0686.
[73]. XIE H R, WANG J, ZHANG M. Parametric genera-tive schemes with geometric constraints for encoding and synthesizing airfoils[J]. Engineering Applications of Artificial Intelligence, 2024, 128: 107505.
[74]. CHEN W, CHIU K, FUGE M. Aerodynamic design optimization and shape exploration using generative adversarial networks[C]//AIAA Scitech 2019 forum. 2019: 2351.
[75]. DU X, HE P, MARTINS J R R A. A B-spline-based generative adversarial network model for fast interac-tive airfoil aerodynamic optimization[C]//AIAA scitech 2020 forum. 2020: 2128.
[76]. CHEN W, FUGE M. BezierGAN: Automatic Genera-tion of Smooth Curves from Interpretable Low-Dimensional Parameters[J]. arXiv preprint arXiv:1808.08871, 2018.
[77]. DU X S, HE P, MARTINS J R R A. Rapid airfoil design optimization via neural networks-based pa-rameterization and surrogate modeling[J]. Aerospace Science and Technology, 2021, 113: 106701.
[78]. CHEN W, RAMAMURTHY A. Deep generative model for efficient 3D airfoil parameterization and generation[C]//AIAA Scitech 2021 Forum. 2021: 1690.
[79]. LI J C, ZHANG M Q, TAY C M J, et al. Low-Reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes[J]. Aero-space Science and Technology, 2022, 121: 107309.
[80]. LI J C, ZHANG M Q, MARTINS J R R A, et al. Effi-cient aerodynamic shape optimization with deep-learning-based geometric filtering[J]. AIAA journal, 2020, 58(10): 4243-4259.
[81]. WANG Y Y, SHIMADA K, BARATI FARIMANI A. Airfoil GAN: encoding and synthesizing airfoils for aerodynamic shape optimization[J]. Journal of Com-putational Design and Engineering, 2023, 10(4): 1350-1362.
[82]. WEI Z, DUFOUR E, PELLETIER C, et al. Dif-fAirfoil: An Efficient Novel Airfoil Sampler Based on Latent Space Diffusion Model for Aerodynamic Shape Optimization[C]//AIAA AVIATION Forum. 2024.
[83]. RUH M L, LIU X B, YU R, et al. Airfoil shape pa-rameterization using reconstruction-error-minimizing generative adversarial networks[C]//AIAA AVIATION 2023 Forum. 2023: 3722.
[84]. CARPENTER M, HARTFIELD R, BURKHALTER J. A comprehensive approach to cataloging missile aer-odynamic performance using surrogate modeling techniques and statistical learning[C]//29th AIAA Ap-plied Aerodynamics Conference. 2011: 3029.
[85]. ?ETINER A E, YAGIZ B, GUZEL G, et al. CFD based response surface modeling with an application in missile aerodynamics[C]//34th AIAA Applied Aer-odynamics Conference. 2016: 4336.
[86]. 孙帅. 基于RBF方法的扑翼非定常气动特性数值研究[D]. 北京: 北京理工大学, 2014.
SUN S. A numerical study of unsteady aerodynamic characteristics of flapping wing based on RBF[D]. Beijing: Beijing Institute of Technology, 2014 (in Chinese).
[87]. 彭博, 聂蓉梅, 陈海东. 基于支持向量机的火箭气动学科代理模型构建方法[J]. 导弹与航天运载技术, 2013, 04: 33-37.
PENG B, NIE R M, CHEN H D. Surrogate model construction for rocket aerodynamic discipline based on support vector machine[J]. Missiles and Space Ve-hicles, 2013, 04: 33-37 (in Chinese).
[88]. 胡伟杰. 基于机器学习的导弹气动性能与流场预测研究[D]. 南京: 南京航空航天大学, 2021.
HU W J. Research on the prediction of missile aero-dynamic performance and flow field based on ma-chine learning[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese).
[89]. DURU C, ALEMDAR H, BARAN O U. A deep learning approach for the transonic flow field predic-tions around airfoils[J]. Computers & Fluids, 2022, 236: 105312.
[90]. ZHANG H. A novel deep-learning-based pressure distribution prediction approach of airfoils[J]. Pro-ceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2023, 237(16): 3786-3799.
[91]. ZHANG G B, HU L W, ZHANG J, et al. A Multi-Task Learning Method Combined with GAN for Aer-odynamic Prediction[C]//2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). IEEE, 2022: 1-5.
[92]. 张广博. 基于多任务学习的大差异性空气动力学数据建模方法研究[D]. 成都: 电子科技大学, 2023.
ZHANG G B. Research on modeling methods for high discrepant aerodynamic data based on multi-task learning[D]. Chengdu: University of Electronic Sci-ence and Technology of China, 2023 (in Chinese).
[93]. 张骏, 张广博, 程艳青, 等. 一种气动大差异性数据多任务学习方法[J]. 空气动力学学报, 2022, 40(06): 64-72.
ZHANG J, ZHANG G B, CHENG Y Q, et al. A mul-ti-task learning method for large discrepant aerody-namic data[J]. Acta Aerodynamica Sinica, 2022, 40(06): 64-72 (in Chinese).
[94]. HU L W, XIANG Y, ZHANG J, et al. Aerodynamic data predictions based on multi-task learning[J]. Ap-plied Soft Computing, 2022, 116: 108369.
[95]. WANG Y Q, DENG L, Wan Y B, et al. An intelligent method for predicting the pressure coefficient curve of airfoil-based conditional generative adversarial networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 34(7): 3538-3552.
[96]. HU L W, WANG W Y, XIANG Y, et al. Flow field reconstructions with gans based on radial basis func-tions[J]. IEEE Transactions on Aerospace and Elec-tronic Systems, 2022, 58(4): 3460-3476.
[97]. 王兵. 基于生成式对抗网络的气动建模与优化方法[D]. 成都: 电子科技大学, 2021.
WANG B. Aerodynamic modeling and optimization methods based on generative adversarial network[D]. Chengdu: University of Electronic Science and Tech-nology of China, 2021 (in Chinese).
[98]. 陈树生, 金世轶, 林家豪, 等. 基于混合条件生成对抗网络的飞行器气动电磁耦合优化设计方法[P]. 中国: CN202410089945.
[99]. DURU C, ALEMDAR H, BARAN O U. A deep learning approach for the transonic flow field predic-tions around airfoils[J]. Computers & Fluids, 2022, 236: 105312.
[100]. THUEREY N, WEI?ENOW K, PRANTL L, et al. Deep learning methods for Reynolds-averaged Na-vier–Stokes simulations of airfoil flows[J]. AIAA Journal, 2020, 58(1): 25-36.
[101]. 曹晓峰, 李鸿岩, 郭承鹏, 等. 基于深度学习的二维翼型流场重构技术研究[J]. 航空科学技术, 2022, 33(07): 106-112.
CAO X F, LI H Y, GUO C P, et al. Research on Two-Dimensional Airfoil Flow Field Reconstruction Based on Deep Learning[J]. Aeronautical Science & Tech-nology, 2022, 33(07): 106-112 (in Chinese).
[102]. ROZOV V, BREITSAMTER C. Data-driven prediction of unsteady pressure distributions based on deep learning[J]. Journal of Fluids and Structures, 2021, 104: 103316.
[103]. SABATER C, STüRMER P, BEKEMEYER P. Fast predictions of aircraft aerodynamics using deep-learning techniques[J]. AIAA Journal, 2022, 60(9): 5249-5261.
[104]. SAETTA E, TOGNACCINI R, IACCARINO G. Uncertainty quantification in autoencoders predictions: Applications in aerodynamics[J]. Journal of Computa-tional Physics, 2024, 506: 112951.
[105]. KIM J, LEE C. Deep unsupervised learning of turbulence for inflow generation at various Reynolds numbers[J]. Journal of Computational Physics, 2020, 406: 109216.
[106]. WU H Z, LIU X J, AN W, et al. A deep learning approach for efficiently and accurately evaluating the flow field of supercritical airfoils[J]. Computers & Fluids, 2020, 198: 104393.
[107]. WU H Z, LIU X J, AN W, et al. A generative deep learning framework for airfoil flow field predic-tion with sparse data[J]. Chinese Journal of Aero-nautics, 2022, 35(1): 470-484.
[108]. YANG Y J, LI R Z, ZHANG Y F, et al. Flow-field prediction of airfoil off-design conditions based on a modified variational autoencoder[J]. AIAA Jour-nal, 2022, 60(10): 5805-5820.
[109]. CHEN D L, GAO X, XU C F, et al. FlowGAN: A conditional generative adversarial network for flow prediction in various conditions[C]//2020 IEEE 32nd international conference on tools with artificial intel-ligence (ICTAI). IEEE, 2020: 315-322.
[110]. ABAIDI R, ADAMS N A. GAN-based genera-tion of realistic compressible-flow samples from in-complete data[J]. Computers & Fluids, 2024, 269: 106113.
[111]. WANG J, HE C, LI R Z, et al. Flow field pre-diction of supercritical airfoils via variational autoen-coder based deep learning framework[J]. Physics of Fluids, 2021, 33(8).
[112]. TAN Z W, LI R Z, ZHANG Y F. Flow Field Reconstruction of 2D Hypersonic Inlets Based on a Variational Autoencoder[J]. Aerospace, 2023, 10(9): 825.
[113]. LIU G Y, LI R Z, ZHOU X Z, et al. Reconstruc-tion and fast prediction of a 3D flow field based on a variational autoencoder[J].
[114]. SOLERA-RICO A, SANMIGUEL VILA C, GóMEZ-LóPEZ M, et al. β-Variational autoencoders and transformers for reduced-order modelling of fluid flows[J]. Nature Communications, 2024, 15(1): 1361.
[115]. CHENG M, FANG F, PAIN C C, et al. An ad-vanced hybrid deep adversarial autoencoder for pa-rameterized nonlinear fluid flow modelling[J]. Com-puter Methods in Applied Mechanics and Engineering, 2020, 372: 113375.
[116]. ROZOV V, BREITSAMTER C. Data-driven prediction of unsteady pressure distributions based on deep learning[J]. Journal of Fluids and Structures, 2021, 104: 103316.
[117]. LEE S, YOU D. Data-driven prediction of un-steady flow over a circular cylinder using deep learn-ing[J]. Journal of Fluid Mechanics, 2019, 879: 217-254.
[118]. LEE S, YOU D. Prediction of laminar vortex shedding over a cylinder using deep learning[J]. arXiv preprint arXiv:1712.07854, 2017.
[119]. 惠心雨, 袁泽龙, 白俊强, 等. 基于深度学习的非定常周期性流动预测方法[J]. 空气动力学学报, 2019, 37(3): 462-469.
HUI X Y, YUAN Z L, BAI J Q, et al. A method of un-steady periodic flow field prediction based on the deep learning[J]. Acta Aerodynamica Sinica, 2019, 37(3): 462-469 (in Chinese).
[120]. 高正红, 王超. 飞行器气动外形设计方法研究与进展[J]. 空气动力学学报, 2017, 35(4): 516-528.
GAO Z H, WANG C. Aerodynamic shape design methods for aircraft: status and trends[J]. Acta Aero-dynamica Sinica, 2017, 35(4): 516-528 (in Chinese).
[121]. LIGHTHILL M J. A new method of two-dimensional aerodynamic design[J]. R&M1111, Aer-onautical Research Council, 1945.
[122]. TAKANASHI S. Iterative three-dimensional transonic wing design using integral equations[J]. Journal of aircraft, 1985, 22(8): 655-660.
[123]. DULIKRAVICH G, BAKER D. Aerodynamic shape inverse design using a Fourier series meth-od[C]//37th Aerospace sciences meeting and exhibit. 1999: 185.
[124]. 李焦赞, 高正红, 詹浩. 基于目标压力分布优化的翼型反设计方法研究[J]. 弹箭与制导学报, 2008, 28(1): 187-190.
LI J Z, GAO Z H, ZHAN H, et al. Study on inverse design method of airfoil based on optimization of tar-get pressure distribution[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(1): 187-190 (in Chinese).
[125]. 李焦赞. 基于目标压力分布优化的翼型反设计方法研究[D]. 西安: 西北工业大学, 2007.
LI J Z. Study on inverse design method of airfoil based on optimization of target pressure distribu-tion[D]. Xi’an: Northwestern Polytechnical University, 2007 (in Chinese).
[126]. 尚克明. 直升机旋翼翼型的气动设计方法研究[D]. 南京: 南京航空航天大学, 2009.
SHANG K M. Research on aerodynamic design method for helicopter rotor airfoils[D]. Nanjing: Nan-jing University of Aeronautics and Astronautics, 2009 (in Chinese).
[127]. 刘浩, 徐敏, 叶茂. 基于特征正交分解的跨声速流场重构和翼型反设计方法研究[J]. 空气动力学学报, 2012, 30(4): 539-545.
LIU H, XU M, YE M. Investigation of transonic flow field reconstruction and inverse airfoil design based on proper orthogonal decomposition ROM[J]. Acta Aerodynamica Sinica, 2012, 30(4): 539-545 (in Chi-nese).
[128]. 白俊强, 邱亚松, 华俊. 改进型 Gappy POD 翼型反设计方法[J]. 航空学报, 2013, 34(4): 762-771.
BAI J Q, QIU Y S, HUA J. Improved airfoil inverse design method based on Gappy POD[J]. Acta Aero-nautica et Astronautica Sinica, 2013, 34(4): 762-771 (in Chinese).
[129]. 刘俊, 宋文萍, 韩忠华, 等. Kriging模型在翼型反设计中的应用研究[J]. 空气动力学学报, 2014, 32(04): 518-526.
LIU J, SONG W P, HAN Z H, et al. Kriging-based airfoil inverse design[J] . Acta Aerodynamica Sinica, 2014, 32(04): 518-526 (in Chinese).
[130]. 何磊, 钱炜祺, 刘滔. 基于深度学习的翼型反设计方法[J]. 航空动力学报, 2020, 35(9): 1909-1917.
HE L, QIAN W Q, LIU T. Inverse design method of airfoil based on deep learning[J]. Journal of Aero-space Power, 2020, 35(9): 1909-1917 (in Chinese).
[131]. CHEN W, AHMED F. Padgan: Learning to generate high-quality novel designs[J]. Journal of Mechanical Design, 2021, 143(3): 031703.
[132]. TAN X, MANNA D, CHATTORAJ J, et al. Airfoil Inverse Design using Conditional Generative Adversarial Networks[C]//2022 17th International Conference on Control, Automation, Robotics and Vi-sion (ICARCV). IEEE, 2022: 143-148.
[133]. ACHOUR G, SUNG W J, PINON-FISCHER O J, et al. Development of a conditional generative ad-versarial network for airfoil shape optimiza-tion[C]//AIAA Scitech 2020 Forum. 2020: 2261.
[134]. YILMAZ E, GERMAN B. Conditional genera-tive adversarial network framework for airfoil inverse design[C]//AIAA aviation 2020 forum. 2020: 3185.
[135]. YONEKURA K, WADA K, SUZUKI K. Gen-erating various airfoil shapes with required lift coeffi-cient using conditional variational autoencoders[J]. arXiv preprint arXiv:2106.09901, 2021.
[136]. YONEKURA K, MIYAMOTO N, SUZUKI K. Inverse airfoil design method for generating varieties of smooth airfoils using conditional WGAN-gp[J]. Structural and Multidisciplinary Optimization, 2022, 65(6): 173.
[137]. YONEKURA K, TOMORI Y, SUZUKI K. Air-foil generation and feature extraction using the condi-tional VAE-WGAN-gp[J]. arXiv preprint arXiv:2311.05445, 2023.
[138]. CHATTORAJ J, WONG J C, ZEXUAN Z, et al. Tailoring Generative Adversarial Networks for Smooth Airfoil Design[J]. arXiv preprint arXiv:2404.11816, 2024.
[139]. NOBARI A H, CHEN W, AHMED F. Pcdgan: A continuous conditional diverse generative adversarial network for inverse design[C]//Proceedings of the 27th ACM SIGKDD conference on knowledge dis-covery & data mining. 2021: 606-616.
[140]. ZHAO Y X, ZHANG P, SUN G P, et al. CcDPM: A Continuous Conditional Diffusion Proba-bilistic Model for Inverse Design[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2024, 38(15): 17033-17041.
[141]. 吴明雨, 陈志华, 邱志明, 等. 条件生成对抗网络的翼型反设计方法[J]. 宇航学报, 2023, 44(10): 1512-1521.
[142]. YONEKURA K, SUZUKI K. Data-driven de-sign exploration method using conditional variational autoencoder for airfoil design[J]. Structural and Mul-tidisciplinary Optimization, 2021, 64(2): 613-624.
[143]. CHEN Q Y, WANG J, POPE P, et al. Inverse design of two-dimensional airfoils using conditional generative models and surrogate log-likelihoods[J]. Journal of Mechanical Design, 2022, 144(2): 021712.
[144]. 王超杰, 何磊, 李川, 等. 基于注意力机制的翼型反设计方法[J]. 航空动力学报, 2024, 39: 1-8.
WANG C J, HE L, LI C, et al. Airfoil reverse design method based on self-attention mechanism[J]. Journal of Aerospace Power, 2024, 39: 1-8 (in Chinese).
[145]. JIN S Y, CHEN S S, CHE S Q, et al. Airfoil aerodynamic/stealth design based on conditional gen-erative adversarial networks[J]. Physics of Fluids, 2024, 36(7): 077146.
[146]. SEKAR V, ZHANG M Q, SHU C, et al. Inverse design of airfoil using a deep convolutional neural network[J]. AIAA Journal, 2019, 57(3): 993-1003.
[147]. WANG J, LI R Z, HE C, et al. An inverse de-sign method for supercritical airfoil based on condi-tional generative models[J]. Chinese Journal of Aero-nautics, 2022, 35(3): 62-74.
[148]. LEI R W, BAI J Q, WANG H, et al. Deep learn-ing based multistage method for inverse design of su-percritical airfoil[J]. Aerospace Science and Technol-ogy, 2021, 119: 107101.
[149]. YANG S, LEE S, YEE K. Inverse design opti-mization framework via a two-step deep learning ap-proach: application to a wind turbine airfoil[J]. Engi-neering with Computers, 2023, 39(3): 2239-2255.
[150]. WANG C, WANG S Y, WANG L Y, et al. Framework of nacelle inverse design method based on improved generative adversarial networks[J]. Aero-space Science and Technology, 2022, 121: 107365.
[151]. 陈树生, 林家豪, 翟丽君, 等. 基于生成式扩散模型的飞行器气动电磁耦合设计方法[P]. 陕西省: CN202410450684.
[152]. 杨才东, 李承阳, 李忠博, 等. 深度学习的图像超分辨率重建技术综述[J]. 计算机科学与探索, 2022, 16(09): 1990-2010.
YANG C D, LI C Y, LI Z B, et al. Review of image super-resolution reconstruction algorithms based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(09): 1990-2010 (in Chinese).
[153]. 许钦. 基于深度学习的湍流超分辨率算法研究[D]. 桂林: 广西师范大学, 2023.
XU Q. Research on turbulent super-resolution algo-rithm based on deep learning[D]. Guilin: Guangxi Normal University, 2023 (in Chinese).
[154]. 聂涛. 基于最大后验概率的视频超分辨率算法研究[D]. 杭州: 浙江大学, 2014.
NIE T. Research on video super-resolution algorithm based on maximum a posteriori[D]. Hangzhou: Zhejiang University, 2014 (in Chinese).
[155]. 白旭,卜丽静,赵国忱,等.多特征的POCS图像超分辨率重建方法[J].测绘科学,2022,47(12):174-183.
BAI X, BU L J, ZHAO G C, et al. .POCS image su-per-resolution reconstruction method based on multi-feature[J]. Science of Surveying and Mapping, 2022, 47(12): 174-183 (in Chinese).
[156]. 李展, 陈清亮, 彭青玉, 等. 基于MAP的单帧字符图像超分辨率重建[J]. 电子学报, 2015, 43(01): 191-197.
LI Z, CHEN Q L, PENG Q Y, et al. MAP-based sin-gle-frame super-resolution reconstruction for charac-ter image[J]. Acta Electronica Sinica, 2015, 43(01): 191-197 (in Chinese).
[157]. 韩阳, 朱军鹏, 郭春雨, 等. 基于扩散模型的流场超分辨率重建方法[J]. 力学学报, 2023, 55(10): 2309-2320.
HAN Y, SONG J P, GUO C Y, et al. A flow field su-per-resolution reconstruction method based on diffu-sion model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2309-2320 (in Chinese).
[158]. ERICHSON N B, MATHELIN L, YAO Z W, et al. Shallow neural networks for fluid flow reconstruc-tion with limited sensors[J]. Proceedings of the Royal Society A, 2020, 476(2238): 20200097.
[159]. NAIR N J, GOZA A. Leveraging reduced-order models for state estimation using deep learning[J]. Journal of Fluid Mechanics, 2020, 897: R1.
[160]. 田野, 邓雪, 郭明明, 等. 深度学习技术在超燃冲压发动机流场分析中应用研究[J]. 防护工程, 2024, 46(02): 26-35.
TIAN Y, DENG X, GUO M M, et al. Application re-search of deep learning technology in flow field anal-ysis of scramjet engines[J]. Protective Engineering, 2024, 46(02): 26-35 (in Chinese).
[161]. 陈皓, 郭明明, 田野, 等. 卷积神经网络在流场重构研究中的进展[J]. 力学学报, 2022, 54(9): 2343-2360.
CHEN H, GUO M M, TIAN Y, et al. Progress of convolution neural networks in flow field reconstruc-tion[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2343-2360 (in Chinese).
[162]. GüEMES A, DISCETTI S, IANIRO A, et al. From coarse wall measurements to turbulent velocity fields through deep learning[J]. Physics of fluids, 2021, 33(7): 075121.
[163]. LEE J, LEE S, YOU D. Deep learning approach in multi-scale prediction of turbulent mixing-layer[J]. arXiv preprint arXiv:1809.07021, 2018.
[164]. FUKAMI K, FUKAGATA K, TAIRA K. Super-resolution analysis via machine learning: a survey for fluid flows[J]. Theoretical and Computational Flu-id Dynamics, 2023, 37(4): 421-444.
[165]. LI R, SONG B Y, CHEN Y R, et al. Deep learn-ing reconstruction of high-Reynolds-number turbulent flow field around a cylinder based on limited sen-sors[J]. Ocean Engineering, 2024, 304: 117857.
[166]. LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a genera-tive adversarial network[C]//Proceedings of the IEEE conference on computer vision and pattern recogni-tion. 2017: 4681-4690.
[167]. DENG Z W, HE C X, LIU Y Z, et al. Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework[J]. Physics of Fluids, 2019, 31(12): 125111.
[168]. JEON Y, YOU D. Super-resolution reconstruc-tion of transitional boundary layers using a deep neu-ral network[J]. International Journal of Aeronautical and Space Sciences, 2023, 24(4): 1015-1031.
[169]. BODE M, GAUDING M, LIAN Z Y, et al. Us-ing physics-informed enhanced super-resolution gen-erative adversarial networks for subfilter modeling in turbulent reactive flows[J]. Proceedings of the Com-bustion Institute, 2021, 38(2): 2617-2625.
[170]. GAUDING M, BODE M. Using physics-informed enhanced super-resolution generative adver-sarial networks to reconstruct mixture fraction statis-tics of turbulent jet flows[C]//High Performance Computing: ISC High Performance Digital 2021 In-ternational Workshops, Frankfurt am Main, Germany, June 24–July 2, 2021, Revised Selected Papers 36. Springer International Publishing, 2021: 138-153.
[171]. YOUSIF M Z, YU L Q, LIM H C. Super-resolution reconstruction of turbulent flow fields at various Reynolds numbers based on generative adver-sarial networks[J]. Physics of Fluids, 2022, 34(1): 015130.
[172]. YOUSIF M Z, YU L Q, LIM H C. High-fidelity reconstruction of turbulent flow from spatially limited data using enhanced super-resolution generative ad-versarial network[J]. Physics of Fluids, 2021, 33(12): 125119.
[173]. XU W J, LUO W Y, WANG Y, et al. Data-driven three-dimensional super-resolution imaging of a turbulent jet flame using a generative adversarial network[J]. Applied Optics, 2020, 59(19): 5729-5736.
[174]. WERHAHN M, XIE Y, CHU M Y, et al. A mul-ti-pass GAN for fluid flow super-resolution[J]. Pro-ceedings of the ACM on Computer Graphics and In-teractive Techniques, 2019, 2(2): 1-21.
[175]. XIE Y, FRANZ E, CHU M Y, et al. tempogan: A temporally coherent, volumetric gan for super-resolution fluid flow[J]. ACM Transactions on Graphics (TOG), 2018, 37(4): 1-15.
[176]. KIM H, KIM J, WON S, et al. Unsupervised deep learning for super-resolution reconstruction of turbulence[J]. Journal of Fluid Mechanics, 2021, 910: A29.
[177]. 陈皓, 郭明明, 田野, 等. 超燃冲压发动机燃烧室流场超分辨率重建[J]. 推进技术, 2024, 45(01): 179-189.
CHEN H, GUO M M, TIAN Y, et al. Super resolution reconstruction of flow field in scramjet combustor[J]. Journal of Propulsion Technology, 2024, 45(1): 2208059 (in Chinese).
[178]. Qi J H, Ma H B. A Combined Model of Diffu-sion Model and Enhanced Residual Network for Su-per-Resolution Reconstruction of Turbulent Flows[J]. Mathematics, 2024, 12(7): 1028.
[179]. SHU D L, LI Z J, FARIMANI A B. A physics-informed diffusion model for high-fidelity flow field reconstruction[J]. Journal of Computational Physics, 2023, 478: 111972.
[180]. SHAN S M, WANG P K, CHEN S, et al. PiRD: Physics-informed Residual Diffusion for Flow Field Reconstruction[J]. arXiv preprint arXiv:2404.08412, 2024.
[181]. BAO K R, ZHANG X Y, PENG W, et al. Deep learning method for super-resolution reconstruction of the spatio-temporal flow field[J]. Advances in Aero-dynamics, 2023, 5(1): 19.
[182]. YANG F Z, YANG H, FU J L, et al. Learning texture transformer network for image super-resolution[C]//Proceedings of the IEEE/CVF confer-ence on computer vision and pattern recognition. 2020: 5791-5800.
[183]. LI X, YANG Z, YANG H. Hybrid-attention-based Swin-Transformer super-resolution reconstruc-tion for tomographic particle image velocimetry[J]. Physics of Fluids, 2024, 36(6) 065132.
[184]. ZENG K, ZHANG Y, XU H, et al. Super-resolution reconstruction of turbulent flows with a hybrid framework of attention[J]. Physics of Fluids, 2024, 36(6): 065107.
[185]. 刘杨. 基于深度学习的流场原位可视化关键技术研究[D]. 长沙: 国防科技大学, 2020.
LIU Y. Research on flow in situ visualization based on deep learning[D]: Changsha: National University of Defense Technology, 2020 (in Chinese).
[186]. LIU Y, WANG Y Q, DENG L, et al. A novel in situ compression method for CFD data based on gen-erative adversarial network[J]. Journal of Visualiza-tion, 2019, 22: 95-108.
[187]. BUZZICOTTI M, BONACCORSO F, DI LEONI P C, et al. Reconstruction of turbulent data with deep generative models for semantic inpainting from TURB-Rot database[J]. Physical Review Fluids, 2021, 6(5): 050503.
[188]. POST J. The next generation air transportation system of the United States: vision, accomplishments, and future directions[J]. Engineering, 2021, 7(4): 427-430.
[189]. BOLI? T, RAVENHILL P. SESAR: The past, present, and future of European air traffic manage-ment re-search[J]. Engineering, 2021, 7(4): 448-451.
[190]. 郭正玉, 刘浩宇, 苏雨. 空战目标轨迹预测技术研究综述[J]. 航空兵器, 2024, 31(2): 32-43.
GUO Z Y, LIU H Y, SU Y. Review of Research on airborne target trajectory prediction technology[J]. Aero Weaponry, 2024, 31(2): 32-43. (in Chinese)
[191]. 乔少杰, 韩楠, 朱新文, 等. 基于卡尔曼滤波的动态轨迹预测算法[J]. 电子学报, 2018, 46(02): 418-423.
QIAO S J, HAN N, ZHU X W, et al. A dynamic tra-jectory prediction algorithm based on Kalman filter[J]. ACTA ELECTRONICA SINICA, 2018, 46(02): 418-423. (in Chinese)
[192]. 郑天宇, 姚郁, 贺风华. 基于可学习EKF的高超声速飞行器航迹估计[J]. 哈尔滨工业大学学报, 2020, 52(06): 160-170.
ZHENG T Y, YAO Y, HE F H. Trajectory estimation of a hypersonic flight vehicle via L-EKF[J]. Journal of Harbin Institute of Technology, 2020, 52(06): 160-170.
[193]. MATHEW W, RAPOSO R, MARTINS B. Pre-dicting future locations with hidden Markov mod-els[C]//Proceedings of the 2012 ACM conference on ubiquitous computing. 2012: 911-918.
[194]. 翟岱亮, 雷虎民, 李炯, 等. 基于自适应IMM的高超声速飞行器轨迹预测[J]. 航空学报, 2016, 37(11): 3466-3475.
ZHAI D L, LEI H M, LI J, et al. Trajectory prediction of hypersonic vehicle based on adaptive IMM[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3466-3475. (in Chinese)
[195]. TASTAMBEKOV K, PUECHMOREL S, DELAHAYE D, et al. Aircraft trajectory forecast-ing using local functional regression in Sobolev space[J]. Transportation research part C: emerging technologies, 2014, 39: 1-22.
[196]. 奚之飞, 徐安, 寇英信, 等. 基于改进粒子群算法辨识Volterra级数的目标机动轨迹预测[J]. 航空学报, 2020, 41(12): 324183.
XI Z F, XU A, KOU Y X, et al. Target maneuvering trajectory prediction based on Volterra series identi-fied by improved particle swarm algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 324183. (in Chinese)
[197]. 张宏鹏, 黄长强, 唐上钦, 等. 基于卷积神经网络的无人作战飞机飞行轨迹实时预测[J]. 兵工学报, 2020, 41(09): 1894-1903.
ZHANG H P, HUANG C Q, TANG S Q, et al. CNN-based real-time prediction method of flight trajectory of unmanned combat aerial vehicle[J]. Acta Arma-mentarii, 2020, 41(09): 1894-1903. (in Chinese)
[198]. ZENG W L, QUAN Z B, ZHAO Z Y, et al. A deep learning approach for aircraft trajectory predic-tion in terminal airspace[J]. IEEE Access, 2020, 8: 151250-151266.
[199]. 石庆研, 岳聚财, 韩萍, 等. 基于LSTM-ARIMA模型的短期航班飞行轨迹预测[J]. 信号处理, 2019, 35(12): 2000-2009.
SHI Q Y, YUE J C, HAN P, et al. Short-term flight trajectory prediction based on LSTM-ARIMA mod-el[J]. Journal of Signal Processing, 2019, 35(12): 2000-2009. (in Chinese)
[200]. 崔亚奇, 熊伟, 何友. 不确定航迹自适应预测模型[J]. 航空学报, 2019, 40(5): 322557.
CUI Y Q, XIONG W, HE Y. Adaptive forecast model for uncertain track[J]. Acta Aeronautica et Astro-nautica Sinica, 2019, 40(5): 322557. (in Chinese)
[201]. LIU Y H, WANG H T, FAN J X, et al. Control-oriented UAV highly feasible trajectory planning: A deep learning method[J]. Aerospace Science and Technology, 2021, 110: 106435.
[202]. MA L, TIAN S. A hybrid CNN-LSTM model for aircraft 4D trajectory prediction[J]. IEEE access, 2020, 8: 134668-134680.
[203]. ZHONG G, ZHANG H H, ZHOU J Y, et al. Short-term 4D trajectory prediction for UAV based on spatio-temporal trajectory clustering[J]. IEEE Access, 2022, 10: 93362-93380.
[204]. 孔建国, 李亚彬, 张时雨, 等. 基于CNN-LSTM-attention模型航迹预测研究[J]. 航空计算技术, 2023, 53(1): 1-5.
KONG J G,LI Y B,ZHANG S Y, et al. Research on track prediction based on CNN-LSTM-attention Model[J]. Aeronautical Computing Technique, 2023, 53(1): 1-5. (in Chinese)
[205]. 王堃, 周志崇, 曲凯, 等. 基于注意力机制的CNN-LSTM模型的航迹预测[J]. 空军工程大学学报, 2023, 24(6): 50-57.
WANG K, ZHOU Z C, QU K, et al. Real-time track prediction of CNN-LSTM model based on attention mechanism[J]. Journal of Air Force Engineering Uni-versity, 2023, 24(6): 50-57. (in Chinese)
[206]. 李战武, 张帅, 乔英峰, 等. 基于自注意力机制和CNN-LSTM的空战目标机动轨迹预测[J]. 兵器装备工程学报, 2023, 44(07): 209-216.
LI Z W, ZHANG S, QIAO Y F, et al. Maneuvering trajectory prediction of air combat targets based on self-attention mechanism and CNN-LSTM[J]. Journal of Ordnance Equipment Engineering, 2023, 44(07): 209-216. (in Chinese)
[207]. 方伟, 汤淼, 闫文君, 等. 基于残差神经网络和LSTM的飞行轨迹预测[J]. 舰船电子工程, 2023, 43(10): 42-46.
FANG W, TANG M, YAN W J, et al. Flight trajectory prediction based on residual neural network and LSTM[J]. Ship Electronic Engineering, 2023, 43(10): 42-46. (in Chinese)
[208]. 王硕, 吴楠, 黄洁, 等, 基于残差修正CNN-BiLSTM的空中目标航迹短期预测算法[J].指挥控制与仿真, 2024, 46(1): 55-63.
WANG S, WU N, HUANG J, et al. Short-term predic-tion algorithm of air target track based on residual correction CNN-BiLSTM[J]. Command Control & Simulation, 2024, 46(1): 55-63. (in Chinese)
[209]. 张飞桥, 张亦驰, 严皓. 基于改进卷积网络的终端区4D航迹预测与冲突检测[J]. 科学技术与工程, 2024, 24(5): 2150-2157.
ZHANG F Q, ZHANG Y C, YAN H. Improved con-volutional network based 4D trajectory prediction and conflict detection in terminal areas[J] Science Tech-nology and Engineering, 2024, 24(5): 2150-2157. (in Chinese)
[210]. WU X P, YANG H Y, CHEN H, et al. Long-term 4D trajectory prediction using generative adver-sarial networks[J]. Transportation Research Part C: Emerging Technologies, 2022, 136: 103554.
[211]. XIANG J, XIE J, CHEN J. Landing Trajectory Prediction for UAS Based on Generative Adversarial Net-work[C]//AIAA SCITECH 2023 Forum. 2023: 0127.
[212]. 陈玉立, 佟强, 谌彤童, 等. 基于注意力机制和生成对抗网络的飞行器短期航迹预测模型[J]. 计算机应用, 2022, 42(10): 3292-3299.
CHEN Y L, TONG Q, CHEN T T, et al. Short-term trajectory prediction model of aircraft based on atten-tion mechanism and generative adversarial network[J]. Journal of Computer Applications, 2022, 42(10): 3292-3299. (in Chinese)
[213]. ZHANG H Y, LIU Z Z. Four-Dimensional Air-craft Trajectory Prediction Based on Generative Deep Learn-ing[J]. Journal of Aerospace Information Sys-tems, 2024: 1-13.
[214]. TONG Q, HU J Q, CHEN Y L, et al. Long-term trajectory prediction model based on Transformer[J]. IEEE Access, 2023.
[215]. DONG X C, TIAN Y, NIU K X, et al. Research on flight trajectory prediction method based on trans-form-er[C]//International Conference on Smart Trans-portation and City Engineering (STCE 2023). SPIE, 2024, 13018: 1403-1409.
[216]. VOS R W, SUN J, HOEKSTRA J M. A Trans-former-based Trajectory Prediction Model to Support Air Traffic Demand Forecasting[C]//International Conference on Research in Air Transportation. 2024: ICRAT 2024-87.
[217]. ZHANG W X, PAYAN A, MAVRIS D. Aircraft Trajectory Prediction in Terminal Airspace Through Deep Learning Approaches[C]//AIAA AVIATION FORUM AND ASCEND 2024. 2024: 4649.
[218]. 狄子琦, 王翔宇, 吴双, 等. 基于Transformer架构的高超声速飞行器轨迹生成与预测算法[J]. 空天防御, 2023, 6(04): 35-41.
DI Z Q, WANG X Y, WU S, et al. An algorithm for trajectory generation and prediction of hypersonic ve-hicle based on Transformer architecture[J]. AIR & SPACE DEFENSE, 2023, 6(04): 35-41. (in Chinese)
[219]. SILVESTRE J, MIELGO P, BREGON A, et al. Multi-route aircraft trajectory prediction using Tem-poral Fusion Transformers[J]. IEEE Access, 2024.
[220]. LUO A F, LUO Y X, LIU H, et al. An improved transformer-based model for long-term 4D trajectory pre-diction in civil aviation[J]. IET Intelligent Transport Systems, 2024.
[221]. HASHEMI S M, HASHEMI S A, BOTEZ R M, et al. Aircraft trajectory prediction enhanced through resilient generative adversarial networks secured by blockchain: Application to UAS-S4 Ehécatl. Appl. Sci. 2023, 13, 9503.
[222]. LIU Y L, HANSEN M. Predicting aircraft tra-jectories: A deep generative convolutional recurrent neural networks approach[J]. arXiv preprint arXiv:1812.11670, 2018.
[223]. PANG Y T, LIU Y M. Conditional generative adversarial networks (CGAN) for aircraft trajectory predic-tion considering weather effects[C]//AIAA Scitech 2020 Forum. 2020: 1853.
[224]. YEH S T, DU X S. Optimal Tilt-Wing eVTOL Takeoff Trajectory Prediction Using Regression Gen-erative Adversarial Networks[J]. Mathematics, 2023, 12(1): 26.
[225]. YEH S T, DU X S. Transfer-Learning-Enhanced Regression Generative Adversarial Networks for Op-timal eVTOL Takeoff Trajectory Prediction[J]. Elec-tronics, 2024, 13(10): 1911.
[226]. WANG Y H, CHEN Y Y, YU R, et al. Coopera-tive Trajectory Prediction of UAVs via Generative Adversar-ial Networks[C]//IECON 2023-49th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2023: 1-6.
[227]. 张百川, 毕文豪, 张安, 等. 基于Transformer模型的空战飞行器轨迹预测误差补偿方法[J]. 航空学报, 2023, 44(9): 327413.
ZHANG B C, BI W H, ZHANG A, et al. Transform-er-based error compensation method for air combat aircraft trajectory prediction[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 327413. (in Chinese)
[228]. 石争浩, 仵晨伟, 李成建, 等. 航空遥感图像深度学习目标检测技术研究进展[J]. 中国图象图形学报, 2023, 28(09): 2616-2643.
Shi Z H, Wu C W, Li C J, et al. Object detection tech-niques based on deep learning for aerial remote sens-ing images: a survey[J]. Journal of Image and Graphics, 2023, 28(09): 2616-2643. (in Chinese)
[229]. 耿创, 宋品德, 曹立佳. YOLO算法在目标检测中的研究进展[J]. 兵器装备工程学报, 2022, 43(09): 162-173.
GENG C, SONG P D, CAO L J. Research progress of YOLO algorithm in target detection[J]. Journal of Ordnance Equipment Engineering, 2022, 43(09): 162-173. (in Chinese)
[230]. 裴伟, 许晏铭, 朱永英, 等. 改进的SSD航拍目标检测方法[J]. 软件学报, 2019, 30(03): 738-758.
PEI W, XU Y M, ZHU Y Y, et al. The target detection method of aerial photography images with improved SSD[J]. Journal of Software, 2019, 30(03): 738-758. (in Chinese)
BOUDJIT K, RAMZAN N. Human detection based on deep learning YOLO-v2 for real-time UAV appli-ca-tions[J]. Journal of Experimental & Theoretical Ar-tificial Intelligence, 2022, 34(3): 527-544.
[231]. BOUDJIT K, RAMZAN N. Human detection based on deep learning YOLO-v2 for real-time UAV applica-tions[J]. Journal of Experimental & Theoreti-cal Artificial Intelligence, 2022, 34(3): 527-544.
[232]. SHASHANK A, SAJITHVARIYAR V V, SOWMYA V, et al. Identifying epiphytes in drones photos with a conditional generative adversarial net-work (C-GAN)[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Infor-mation Sciences, 2020, 44: 99-104.
[233]. CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transform-ers[C]//European conference on computer vision. Cham: Springer International Publishing, 2020: 213-229.
[234]. LEBEDEV M A, VIZILTER Y V, VYGOLOV O V, et al. Change detection in remote sensing images using conditional adversarial networks[J]. The Inter-national Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, 42: 565-571.
[235]. Niu X D, Gong M G, Zhan T, et al. A condition-al adversarial network for change detection in hetero-gene-ous images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 16(1): 45-49.
[236]. ZHANG Y H, SUN H, ZUO J W, et al. Aircraft type recognition in remote sensing images based on feature learning with conditional generative adversar-ial networks[J]. Remote Sensing, 2018, 10(7): 1123.
[237]. LI R, PENG Y, YANG Q Q. Fusion enhance-ment: UAV target detection based on multi-modal GAN[C]//2023 IEEE 7th Information Technology and Mechatronics Engineering Conference (ITOEC). IEEE, 2023, 7: 1953-1957.
[238]. REN K, GAO Y, WAN M J, et al. Infrared small target detection via region super resolution generative adversarial network[J]. Applied Intelligence, 2022, 52(10): 11725-11737.
[239]. SALAUDEEN H, ?ELEBI E. Pothole detection using image enhancement GAN and object detection net-work[J]. Electronics, 2022, 11(12): 1882.
[240]. RABBI J, RAY N, SCHUBERT M, et al. Small-object detection in remote sensing images with end-to-end edge-enhanced GAN and object detector net-work[J]. Remote Sensing, 2020, 12(9): 1432.
[241]. WANG J Y, LI Y N, CHEN W X. UAV aerial image generation of crucial components of high-voltage transmission lines based on multi-level gener-ative adversarial network[J]. Remote Sensing, 2023, 15(5): 1412.
[242]. LI J N, LIANG X D, WEI Y C, et al. Perceptual generative adversarial networks for small object de-tec-tion[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1222-1230.
[243]. Y???T S, YILDIRIM T. Improving object de-tection of UAV images with Real-ESRGAN[J]. Re-cent Adv Sci Eng, 2023, 3(2): 33?39.
[244]. XI Y, JIA W J, ZHENG J B, et al. DRL-GAN: Dual-stream representation learning GAN for low-resolution image classification in UAV applica-tions[J]. IEEE Journal of selected topics in applied earth observations and remote sensing, 2020, 14: 1705-1716.
[245]. Li X, Duan H B, Tian Y L, et al. Exploring im-age generation for UAV change detection[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(6): 1061-1072.
[246]. BOSQUET B, CORES D, SEIDENARI L, et al. A full data augmentation pipeline for small object de-tec-tion based on generative adversarial networks[J]. Pattern Recognition, 2023, 133: 108998.
[247]. 雷毅飞, 王露禾, 贺泊茗, 等. 基于深度强化学习的多无人机空战机动策略研究[J]. 航空科学技术, 2024, 35(03): 111-118.
LEI Y F, WANG L H, HE B M, et al. Research on multi-UAV air combat maneuver strategy based on deep reinforcement learning[J].Aeronautical Science & Technology, 2024, 35(03): 111-118. (in Chinese)
[248]. 杨志鹏, 林松, 曾长, 等. 基于深度强化学习的多飞行器自适应协同航路规划[J]. 战术导弹技术, 2024, (02): 106-116.
YANG Z P, LIN S, ZENG C, et al. Multi-aircraft adaptive cooperative route planning based on deep rein-forcement learning[J]. Tactical Missile Technolo-gy, 2024, (02): 106-116. (in Chinese)
[249]. 丁溶, 曹承钰, 李繁飙, 等. 基于深度强化学习的变外形飞行器姿态控制[J]. 航天控制, 2024, 42(02): 55-61.
DING R, CAO C Y, LI F B, et al. Attitude control of morphing vehicle based on deep reinforcement learn-ing[J]. Aerospace Control, 2024, 42(02): 55-61. (in Chinese)
[250]. 白成超, 张琦, 谢旭东, 等. 面向复杂决策的OODA环:智能赋能与认知增强[J]. 指挥与控制学报, 2024, 10(03): 284-297.
BAI C C, ZHANG Q, XIE X D, et al. OODA ring theory for complex decision-making: intelligent em-powerment and cognitive enhancement[J]. Journal of Command and Control, 2024, 10(03): 284-297. (in Chinese)