生成式模型赋能飞行器技术应用研究进展与展望

  • 陈树生 ,
  • 贾苜梁 ,
  • 林家豪 ,
  • 金世轶 ,
  • 高正红 ,
  • 王岳青 ,
  • 马志强 ,
  • 李铮 ,
  • 段辰龙 ,
  • 李佳伟
展开
  • 1. 西北工业大学
    2. 中国空气动力研究与发展中心
    3. 中国运载火箭技术研究院 空间物理实验室
    4. 中国航空研究院
    5. 沈阳飞机设计研究所扬州协同创新研究院有限公司

收稿日期: 2024-09-12

  修回日期: 2024-11-13

  网络出版日期: 2024-11-18

基金资助

国家自然科学基金重大研究计划培育项目

Research progress and prospects of empowering aircraft technology applications with generative models

  • CHEN Shu-Sheng ,
  • JIA Mu-Liang ,
  • LIN Jia-Hao ,
  • JIN Shi-Yi ,
  • GAO Zheng-Hong ,
  • WANG Yue-Qing ,
  • MA Zhi-Qiang ,
  • LI Zheng ,
  • DUAN Chen-Long ,
  • LI Jia-Wei
Expand

Received date: 2024-09-12

  Revised date: 2024-11-13

  Online published: 2024-11-18

摘要

在自然语言处理和计算机视觉领域取得颠覆性应用的生成式模型正成为数智化的新型技术基座,是未来驱动飞行器技术智能化发展的重要引擎。本文综述了生成式模型赋能飞行器技术应用进展情况。首先,总结了生成式模型架构的发展历程,详细介绍了变分自编码器、生成对抗网络、扩散模型、Transformer等基本原理架构和改进方向。其次,归纳了生成式模型在飞行器空气动力学、航迹预测和目标检测等领域的典型应用和变革情况;关注了参数化建模、气动预测模型、反设计等飞行器空气动力设计关键技术的发展趋势;探讨了实时航迹预测、完整航迹预测、协同航迹预测和预测误差补偿的智能实现方法;从现有目标检测方法改进角度分析了生成式模型在多尺度融合、超分辨率增强和数据增强中的作用。最后,从模型方法和应用场景拓展角度展望了生成式模型赋能智能飞行器技术未来的研究方向,针对构建可解释的通用大模型和推动垂直领域应用等方面提出了发展建议。

本文引用格式

陈树生 , 贾苜梁 , 林家豪 , 金世轶 , 高正红 , 王岳青 , 马志强 , 李铮 , 段辰龙 , 李佳伟 . 生成式模型赋能飞行器技术应用研究进展与展望[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.31194

Abstract

Generative models, which have achieved disruptive applications in the fields of natural language processing and computer vision, are becoming the cornerstone of digital intelligence technologies and are served as a crucial engine driving the future development of intelligent aircraft technology. This paper reviews the application progress of aircraft technology empowered with generative models. Firstly, the development history of generative model architectures is summarized. Detailed introductions to the fundamen-tal principles and improvement directions of variational autoencoders, generative adversarial networks, diffusion models, and Transformers are provided. Secondly, it generalizes the typical applications and transformative impacts of generative models in aircraft aerodynamics, trajectory prediction, and target detection. Development trends in key technologies of aircraft aerodynamic design, including parameterized modeling, aerodynamic prediction model and inverse design, are focused. The intelligent imple-mentation methods of real-time trajectory prediction, complete trajectory prediction, collaborative trajectory prediction and pre-diction error compensation are studied. From the perspective of improving existing target detection methods, the roles of genera-tive models in multi-scale fusion, super-resolution enhancement and data enhancement are analyzed. Finally, this paper proposes the future research directions for intelligent aircraft technology empowered with generative models are proposed, from the per-spectives of model method and application scenario expansion. Development suggestions are proposed for building interpretable general models and promoting vertical domain applications.

参考文献

[1]. BUBECK S, CHANDRASEKARAN V, ELDAN R, et al. Sparks of artificial general intelligence: Early experiments with gpt-4[J]. arXiv preprint arXiv: 2303.12712, 2023.
[2]. 王亚珅, 方勇, 江昊, 等. 2023年生成式人工智能技术主要发展动向分析[J]. 无人系统技术, 2024, 7(02): 101-112.
WANG Y K, FANG Y, JIANG H, et al. Main devel-opment trends of generative artificial intelligence technology in 2023[J]. Unmanned Systems Technolo-gy, 2024, 7(02): 101-112.
[3]. OOI K B, TAN G W H, AL-EMRAN M, et al. The potential of generative artificial intelligence across disciplines: Perspectives and future directions[J]. Journal of Computer Information Systems, 2023: 1-32.
[4]. WANG H C, FU T F, DU Y Q, et al. Scientific dis-covery in the age of artificial intelligence[J]. Nature, 2023, 620(7972): 47-60.
[5]. 陈树生, 贾苜梁, 刘衍旭, 等. 变体飞行器变形方式及气动布局设计关键技术研究进展[J]. 航空学报, 2024, 45(6): 629595.
CHEN S S, JIA M L, LIU Y X, et al. Deformation modes and key technologies of aerodynamic layout design for morphing aircraft: Review[J]. Acta Aero-nautica et Astronautica Sinica, 2024, 45(6): 629595. (in Chinese)
[6]. KINGMA D P, WELLING M. Auto-encoding varia-tional bayes[J]. arXiv preprint arXiv:1312.6114, 2013.
[7]. GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J]. Advances in neu-ral information processing systems, 2014, 27.
[8]. SOHL-DICKSTEIN J, WEISS E, Maheswaranathan N, et al. Deep unsupervised learning using nonequilib-rium thermodynamics[C]//International conference on machine learning. PMLR, 2015: 2256-2265.
[9]. VASWANI A, Shazeer N, Parmar N, et al. Attention is all you need[J]. arXiv preprint arXiv:1706.03762, 2017.
[10]. LECUN Y, CHOPRA S, HADSELL R, et al. A tutori-al on energy-based learning[J]. Predicting structured data, 2006, 1(0).
[11]. KINGMA D P, DHARIWAL P. Glow: Generative flow with invertible 1x1 convolutions[J]. Advances in neural information processing systems, 2018, 31.
[12]. MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. Nerf: Representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65(1): 99-106.
[13]. TU W J, DENG W J, GEDEON T. A closer look at the robustness of contrastive language-image pre-training (clip)[J]. Advances in Neural Information Processing Systems, 2024, 36.
[14]. 任亚琪. 基于深度学习的scRNA-seq数据降维和聚类方法研究[D]. 长沙: 湖南大学, 2022.
REN Y Q. Research on dimensionality reduction and clustering method of scRNA-seq data based on deep learning[D]. Changsha: Hunan University, 2022 (in Chinese).
[15]. 郭秋燕, 胡磊, 代劲. 基于云模型的变分自编码器数据压缩方法[J]. 电子技术应用, 2023, 49(10): 96-99.
GUO Q Y, HU L, DAI J. Variational autoencoder data compression algorithm based on cloud model[J]. Computer Technology and Its Applications, 2023, 49(10): 96-99 (in Chinese).
[16]. 杨涛. 基于变分自编码器的文本生成模型研究[D]. 重庆: 西南大学, 2022.
YANG T. Research on text generation model based on variational auto-encoder[D]. Chongqing: Southwest University, 2022 (in Chinese).
[17]. 张志昂, 廖光忠. 改进变分自编码器的工业时序数据异常检测[J]. 计算机工程与设计, 2024, 45(01): 17-23.
ZHANG Z A, LIAO G Z. Anomaly detection of in-dustrial time series data based on variational autoen-cod-er[J]. Computer Engineering and Design, 2024, 45(01): 17-23 (in Chinese).
[18]. 谢胜利, 陈泓达, 高军礼, 等. 基于分布对齐变分自编码器的深度多视图聚类[J]. 计算机学报, 2023, 46(05): 945-959.
XIE S L, CHEN H D, GAO J L, et al. Deep multi-view clustering based on distribution aligned varia-tional autoencoder[J]. Chinese Journal of Computers, 2023, 46(05): 945-959 (in Chinese).
[19]. HIGGINS I, MATTHEY L, PAL A, et al. beta-vae: Learning basic visual concepts with a constrained var-ia-tional framework[J]. ICLR (Poster), 2017, 3.
[20]. BURGESS C P, HIGGINS I, PAL A, et al. Under-standing disentangling in beta-VAE[J]. arXiv preprint arXiv: 1804.03599, 2018.
[21]. RAMACHANDRA G. Least square variational Bayesian autoencoder with regularization[J]. arXiv preprint arXiv:1707.03134, 2017.
[22]. TOLSTIKHIN I, BOUSQUET O, GELLY S, et al. Wasserstein auto-encoders[J]. arXiv preprint arXiv: 1711.01558, 2017.
[23]. SOHN K, LEE H, YAN X C. Learning structured output representation using deep conditional genera-tive models[J]. Advances in neural information pro-cessing systems, 2015, 28.
[24]. BAO J M, CHEN D, WEN F, et al. CVAE-GAN: fine-grained image generation through asymmetric train-ing[C]//Proceedings of the IEEE international confer-ence on computer vision. 2017: 2745-2754.
[25]. SHEN D H, CELIKYILMAZ A, ZHANG Y Z, ET AL. Towards generating long and coherent text with multi-level latent variable models[J]. arXiv preprint arXiv:1902.00154, 2019.
[26]. LI R Z, ZHANG Y F, CHEN H X. Physically inter-pretable feature learning of supercritical airfoils based on variational autoencoders[J]. AIAA Journal, 2022, 60(11): 6168-6182.
[27]. VAN DEN OORD A, VINYALS O. Neural discrete representation learning[J]. Advances in neural infor-mation processing systems, 2017, 30.
[28]. RAZAVI A, VAN DEN OORD A, Vinyals O. Gener-ating diverse high-fidelity images with vq-vae-2[J]. Advances in neural information processing systems, 2019, 32.
[29]. 罗佳, 黄晋英. 生成式对抗网络研究综述[J]. 仪器仪表学报, 2019, 40(03): 74-84.
LUO J, HUANG J Y. Generative adversarial network: an overview[J]. Chinese Journal of Scientific In-strument, 2019, 40(03): 74-84 (in Chinese).
[30]. 张营营. 生成对抗网络模型综述[J]. 电子设计工程, 2018, 26(05): 34-37+43.
ZHANG Y Y. A survey on generative adversarial net-works[J]. Electronic Design Engineering, 2018, 26(05): 34-37+43 (in Chinese).
[31]. 龚颖, 许文韬, 赵策, 等. 生成对抗网络在图像修复中的应用综述[J]. 计算机科学与探索, 2024, 18(03): 553-573.
GONG Y, XU W T, ZHAO C, et al. Review of appli-cation of generative adversarial networks in image res-toration[J]. Journal of Frontiers of Computer Sci-ence and Technology, 2024, 18(03): 553-573 (in Chi-nese).
[32]. 张彬, 周粤川, 张敏, 等. 生成对抗网络改进角度与应用研究综述[J]. 计算机应用研究, 2023, 40(03): 649-658.
ZHANG B, ZHOU Y C, ZHANG M, et al. Review of research on improvement and application of genera-tive adversarial networks[J]. Application Research of Computers, 2023, 40(03): 649-658 (in Chinese).
[33]. Nowozin S, Cseke B, Tomioka R. f-gan: Training generative neural samplers using variational diver-gence minimization[J]. Advances in neural infor-mation processing systems, 2016, 29.
[34]. MAO X D, LI Q, XIE H R, et al. Least squares gener-ative adversarial networks[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2794-2802.
[35]. ZHAO J B, MATHIEU M, LECUN Y. Energy-based generative adversarial network[J]. arXiv preprint arXiv:1609.03126, 2016.
[36]. ARJOVSKY M, CHINTALA S, BOTTOU L. Wasser-stein generative adversarial net-works[C]//International conference on machine learn-ing. PMLR, 2017: 214-223.
[37]. GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein gans[J]. Advances in neural information processing systems, 2017, 30.
[38]. Qi G J. Loss-sensitive generative adversarial networks on lipschitz densities[J]. International Journal of Computer Vision, 2020, 128(5): 1118-1140.
[39]. ODENA A. Semi-supervised learning with generative adversarial networks[J]. arXiv preprint arXiv: 1606. 01583, 2016.
[40]. MIRZA M, OSINDERO S. Conditional Generative Adversarial Nets[J]. arXiv preprint arXiv: 1411.1784, 2014.
[41]. CHEN X, DUAN Y, HOUTHOOFT R, et al. Infogan: Interpretable representation learning by information maximizing generative adversarial nets[J]. Advances in neural information processing systems, 2016, 29.
[42]. ZHANG H, XU T, LI H S, et al. Stackgan: Text to photo-realistic image synthesis with stacked genera-tive adversarial networks[C]//Proceedings of the IEEE international conference on computer vision. 2017: 5907-5915.
[43]. ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2223-2232.
[44]. TOLSTIKHIN I O, GELLY S, BOUSQUET O, et al. Adagan: Boosting generative models[J]. Advances in neural information processing systems, 2017, 30.
[45]. GHOSH A, KULHARIA V, NAMBOODIRI V P, et al. Multi-agent diverse generative adversarial net-works[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 8513-8521.
[46]. DURUGKAR I, GEMP I, MAHADEVAN S. Genera-tive multi-adversarial networks[J]. arXiv preprint arXiv:1611.01673, 2016.
[47]. RADFORD A, METZ L, CHINTALA S. Unsuper-vised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv:1511.06434, 2015.
[48]. LARSEN A B L, S?NDERBY S K, LAROCHELLE H, et al. Autoencoding beyond pixels using a learned similarity metric[C]//International conference on ma-chine learning. PMLR, 2016: 1558-1566.
[49]. ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial net-works[C]//International conference on machine learn-ing. PMLR, 2019: 7354-7363.
[50]. ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial net-works[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1125-1134.
[51]. 王正龙, 张保稳. 生成对抗网络研究综述[J]. 网络与信息安全学报, 2021, 7(4): 68-85.
WANG Z L, ZHANG B W. Survey of generative ad-versarial network[J]. Chinese Journal of Network and Information Security, 2021, 7(4): 68-85 (in Chinese).
[52]. HO J, JAIN A, ABBEEL P. Denoising diffusion prob-abilistic models[J]. Advances in neural information processing systems, 2020, 33: 6840-6851.
[53]. CROITORU F A, HONDRU V, IONESCU R T, et al. Diffusion models in vision: A survey[J]. IEEE Trans-actions on Pattern Analysis and Machine Intel-ligence, 2023, 45(9): 10850-10869.
[54]. SONG J M, MENG C L, ERMON S. Denoising diffu-sion implicit models[J]. arXiv preprint arXiv:2010.02502, 2020.
[55]. ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022: 10684-10695.
[56]. NICHOL A Q, DHARIWAL P. Improved denoising diffusion probabilistic models[C]//International con-fer-ence on machine learning. PMLR, 2021: 8162-8171.
[57]. DHARIWAL P, NICHOL A. Diffusion models beat gans on image synthesis[J]. Advances in neural infor-mation processing systems, 2021, 34: 8780-8794.
[58]. HO J, SALIMANS T. Classifier-free diffusion guid-ance[J]. arXiv preprint arXiv:2207.12598, 2022.
[59]. SONG Y, ERMON S. Generative modeling by esti-mating gradients of the data distribution[J]. Advances in neural information processing systems, 2019, 32.
[60]. SONG Y, SOHL-DICKSTEIN J, KINGMA D P, et al. Score-based generative modeling through stochastic differential equations[J]. arXiv preprint arXiv: 2011. 13456, 2020.
[61]. DOSOVITSKIY A , BEYER L , KOLESNIKOV A ,et al.An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale[C]//International Confer-ence on Learning Representations, 2021.
[62]. LIU Z, LIN Y T, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted win-dows[J]. 2021.DOI:10.48550/arXiv.2103.14030.
[63]. 唐志共, 朱林阳, 向星皓, 等. 智能空气动力学若干研究进展及展望[J]. 空气动力学学报, 2023, 41(7): 1?35.
TANG Z G, ZHU L Y, XIANG X H, et al. Some re-search progress and prospect of Intelligent Aerody-namics[J]. Acta Aerodynamica Sinica, 2023, 41(7): 1?35. (in Chinese)
[64]. MASTERS D A, TAYLOR N J, RENDALL T, et al. Review of aerofoil parameterisation methods for aer-odynamic shape optimisation[C]//53rd AIAA aero-space sciences meeting. 2015: 0761.
[65]. Sun J H, Song W B. A Unified Learning Model for Airfoil Geometry Fitting and Efficient Optimiza-tion[C]//AIAA SCITECH 2023 Forum. 2023: 2129.
[66]. 余婧, 蒋安林, 刘亮, 等. 基于PCA降维的气动外形参数化方法[J]. 航空学报, 2024, 45(10): 67-86.
YU J, JIANG A L, LIU L, et al. PCA aerodynamic geometry parametrization method[J]. Acta Aeronauti-ca et Astronautica Sinica, 2024, 45(10): 129125 (in Chinese).
[67]. WU X J, ZHANG W W, PENG X H, et al. Bench-mark aerodynamic shape optimization with the POD-based CST airfoil parametric method[J]. Aerospace Science and Technology, 2019, 84: 632-640.
[68]. 金世轶, 陈树生, 杨华, 等. 基于数据挖掘的翼型气动隐身多学科分析[J]. 航空动力学报, 2024. (网上发表)
[69]. 陈树生, 金世轶, 林家豪, 等. 一种基于数据挖掘的翼型气动隐身设计规则提取方法[P]. 中国: CN202311585346.
[70]. JIN S Y, CHEN S S, FENG C, et al. Deep learning for airfoil aerodynamic-electromagnetic coupling optimi-zation with random forest[J]. Physics of Fluids, 2024, 36: 017110.
[71]. KANG Y E, LEE D, YEE K. Physically interpretable airfoil parameterization using variational autoencod-er-based generative modeling[C]//AIAA SCITECH 2024 Forum. 2024: 0685.
[72]. SWANNET K, VARRIALE C, DOAN A K. Towards Universal Parameterization: Using Variational Auto-encoders to Parameterize Airfoils[C]//AIAA SCITECH 2024 Forum. 2024: 0686.
[73]. XIE H R, WANG J, ZHANG M. Parametric genera-tive schemes with geometric constraints for encoding and synthesizing airfoils[J]. Engineering Applications of Artificial Intelligence, 2024, 128: 107505.
[74]. CHEN W, CHIU K, FUGE M. Aerodynamic design optimization and shape exploration using generative adversarial networks[C]//AIAA Scitech 2019 forum. 2019: 2351.
[75]. DU X, HE P, MARTINS J R R A. A B-spline-based generative adversarial network model for fast interac-tive airfoil aerodynamic optimization[C]//AIAA scitech 2020 forum. 2020: 2128.
[76]. CHEN W, FUGE M. BezierGAN: Automatic Genera-tion of Smooth Curves from Interpretable Low-Dimensional Parameters[J]. arXiv preprint arXiv:1808.08871, 2018.
[77]. DU X S, HE P, MARTINS J R R A. Rapid airfoil design optimization via neural networks-based pa-rameterization and surrogate modeling[J]. Aerospace Science and Technology, 2021, 113: 106701.
[78]. CHEN W, RAMAMURTHY A. Deep generative model for efficient 3D airfoil parameterization and generation[C]//AIAA Scitech 2021 Forum. 2021: 1690.
[79]. LI J C, ZHANG M Q, TAY C M J, et al. Low-Reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes[J]. Aero-space Science and Technology, 2022, 121: 107309.
[80]. LI J C, ZHANG M Q, MARTINS J R R A, et al. Effi-cient aerodynamic shape optimization with deep-learning-based geometric filtering[J]. AIAA journal, 2020, 58(10): 4243-4259.
[81]. WANG Y Y, SHIMADA K, BARATI FARIMANI A. Airfoil GAN: encoding and synthesizing airfoils for aerodynamic shape optimization[J]. Journal of Com-putational Design and Engineering, 2023, 10(4): 1350-1362.
[82]. WEI Z, DUFOUR E, PELLETIER C, et al. Dif-fAirfoil: An Efficient Novel Airfoil Sampler Based on Latent Space Diffusion Model for Aerodynamic Shape Optimization[C]//AIAA AVIATION Forum. 2024.
[83]. RUH M L, LIU X B, YU R, et al. Airfoil shape pa-rameterization using reconstruction-error-minimizing generative adversarial networks[C]//AIAA AVIATION 2023 Forum. 2023: 3722.
[84]. CARPENTER M, HARTFIELD R, BURKHALTER J. A comprehensive approach to cataloging missile aer-odynamic performance using surrogate modeling techniques and statistical learning[C]//29th AIAA Ap-plied Aerodynamics Conference. 2011: 3029.
[85]. ?ETINER A E, YAGIZ B, GUZEL G, et al. CFD based response surface modeling with an application in missile aerodynamics[C]//34th AIAA Applied Aer-odynamics Conference. 2016: 4336.
[86]. 孙帅. 基于RBF方法的扑翼非定常气动特性数值研究[D]. 北京: 北京理工大学, 2014.
SUN S. A numerical study of unsteady aerodynamic characteristics of flapping wing based on RBF[D]. Beijing: Beijing Institute of Technology, 2014 (in Chinese).
[87]. 彭博, 聂蓉梅, 陈海东. 基于支持向量机的火箭气动学科代理模型构建方法[J]. 导弹与航天运载技术, 2013, 04: 33-37.
PENG B, NIE R M, CHEN H D. Surrogate model construction for rocket aerodynamic discipline based on support vector machine[J]. Missiles and Space Ve-hicles, 2013, 04: 33-37 (in Chinese).
[88]. 胡伟杰. 基于机器学习的导弹气动性能与流场预测研究[D]. 南京: 南京航空航天大学, 2021.
HU W J. Research on the prediction of missile aero-dynamic performance and flow field based on ma-chine learning[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese).
[89]. DURU C, ALEMDAR H, BARAN O U. A deep learning approach for the transonic flow field predic-tions around airfoils[J]. Computers & Fluids, 2022, 236: 105312.
[90]. ZHANG H. A novel deep-learning-based pressure distribution prediction approach of airfoils[J]. Pro-ceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2023, 237(16): 3786-3799.
[91]. ZHANG G B, HU L W, ZHANG J, et al. A Multi-Task Learning Method Combined with GAN for Aer-odynamic Prediction[C]//2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). IEEE, 2022: 1-5.
[92]. 张广博. 基于多任务学习的大差异性空气动力学数据建模方法研究[D]. 成都: 电子科技大学, 2023.
ZHANG G B. Research on modeling methods for high discrepant aerodynamic data based on multi-task learning[D]. Chengdu: University of Electronic Sci-ence and Technology of China, 2023 (in Chinese).
[93]. 张骏, 张广博, 程艳青, 等. 一种气动大差异性数据多任务学习方法[J]. 空气动力学学报, 2022, 40(06): 64-72.
ZHANG J, ZHANG G B, CHENG Y Q, et al. A mul-ti-task learning method for large discrepant aerody-namic data[J]. Acta Aerodynamica Sinica, 2022, 40(06): 64-72 (in Chinese).
[94]. HU L W, XIANG Y, ZHANG J, et al. Aerodynamic data predictions based on multi-task learning[J]. Ap-plied Soft Computing, 2022, 116: 108369.
[95]. WANG Y Q, DENG L, Wan Y B, et al. An intelligent method for predicting the pressure coefficient curve of airfoil-based conditional generative adversarial networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 34(7): 3538-3552.
[96]. HU L W, WANG W Y, XIANG Y, et al. Flow field reconstructions with gans based on radial basis func-tions[J]. IEEE Transactions on Aerospace and Elec-tronic Systems, 2022, 58(4): 3460-3476.
[97]. 王兵. 基于生成式对抗网络的气动建模与优化方法[D]. 成都: 电子科技大学, 2021.
WANG B. Aerodynamic modeling and optimization methods based on generative adversarial network[D]. Chengdu: University of Electronic Science and Tech-nology of China, 2021 (in Chinese).
[98]. 陈树生, 金世轶, 林家豪, 等. 基于混合条件生成对抗网络的飞行器气动电磁耦合优化设计方法[P]. 中国: CN202410089945.
[99]. DURU C, ALEMDAR H, BARAN O U. A deep learning approach for the transonic flow field predic-tions around airfoils[J]. Computers & Fluids, 2022, 236: 105312.
[100]. THUEREY N, WEI?ENOW K, PRANTL L, et al. Deep learning methods for Reynolds-averaged Na-vier–Stokes simulations of airfoil flows[J]. AIAA Journal, 2020, 58(1): 25-36.
[101]. 曹晓峰, 李鸿岩, 郭承鹏, 等. 基于深度学习的二维翼型流场重构技术研究[J]. 航空科学技术, 2022, 33(07): 106-112.
CAO X F, LI H Y, GUO C P, et al. Research on Two-Dimensional Airfoil Flow Field Reconstruction Based on Deep Learning[J]. Aeronautical Science & Tech-nology, 2022, 33(07): 106-112 (in Chinese).
[102]. ROZOV V, BREITSAMTER C. Data-driven prediction of unsteady pressure distributions based on deep learning[J]. Journal of Fluids and Structures, 2021, 104: 103316.
[103]. SABATER C, STüRMER P, BEKEMEYER P. Fast predictions of aircraft aerodynamics using deep-learning techniques[J]. AIAA Journal, 2022, 60(9): 5249-5261.
[104]. SAETTA E, TOGNACCINI R, IACCARINO G. Uncertainty quantification in autoencoders predictions: Applications in aerodynamics[J]. Journal of Computa-tional Physics, 2024, 506: 112951.
[105]. KIM J, LEE C. Deep unsupervised learning of turbulence for inflow generation at various Reynolds numbers[J]. Journal of Computational Physics, 2020, 406: 109216.
[106]. WU H Z, LIU X J, AN W, et al. A deep learning approach for efficiently and accurately evaluating the flow field of supercritical airfoils[J]. Computers & Fluids, 2020, 198: 104393.
[107]. WU H Z, LIU X J, AN W, et al. A generative deep learning framework for airfoil flow field predic-tion with sparse data[J]. Chinese Journal of Aero-nautics, 2022, 35(1): 470-484.
[108]. YANG Y J, LI R Z, ZHANG Y F, et al. Flow-field prediction of airfoil off-design conditions based on a modified variational autoencoder[J]. AIAA Jour-nal, 2022, 60(10): 5805-5820.
[109]. CHEN D L, GAO X, XU C F, et al. FlowGAN: A conditional generative adversarial network for flow prediction in various conditions[C]//2020 IEEE 32nd international conference on tools with artificial intel-ligence (ICTAI). IEEE, 2020: 315-322.
[110]. ABAIDI R, ADAMS N A. GAN-based genera-tion of realistic compressible-flow samples from in-complete data[J]. Computers & Fluids, 2024, 269: 106113.
[111]. WANG J, HE C, LI R Z, et al. Flow field pre-diction of supercritical airfoils via variational autoen-coder based deep learning framework[J]. Physics of Fluids, 2021, 33(8).
[112]. TAN Z W, LI R Z, ZHANG Y F. Flow Field Reconstruction of 2D Hypersonic Inlets Based on a Variational Autoencoder[J]. Aerospace, 2023, 10(9): 825.
[113]. LIU G Y, LI R Z, ZHOU X Z, et al. Reconstruc-tion and fast prediction of a 3D flow field based on a variational autoencoder[J].
[114]. SOLERA-RICO A, SANMIGUEL VILA C, GóMEZ-LóPEZ M, et al. β-Variational autoencoders and transformers for reduced-order modelling of fluid flows[J]. Nature Communications, 2024, 15(1): 1361.
[115]. CHENG M, FANG F, PAIN C C, et al. An ad-vanced hybrid deep adversarial autoencoder for pa-rameterized nonlinear fluid flow modelling[J]. Com-puter Methods in Applied Mechanics and Engineering, 2020, 372: 113375.
[116]. ROZOV V, BREITSAMTER C. Data-driven prediction of unsteady pressure distributions based on deep learning[J]. Journal of Fluids and Structures, 2021, 104: 103316.
[117]. LEE S, YOU D. Data-driven prediction of un-steady flow over a circular cylinder using deep learn-ing[J]. Journal of Fluid Mechanics, 2019, 879: 217-254.
[118]. LEE S, YOU D. Prediction of laminar vortex shedding over a cylinder using deep learning[J]. arXiv preprint arXiv:1712.07854, 2017.
[119]. 惠心雨, 袁泽龙, 白俊强, 等. 基于深度学习的非定常周期性流动预测方法[J]. 空气动力学学报, 2019, 37(3): 462-469.
HUI X Y, YUAN Z L, BAI J Q, et al. A method of un-steady periodic flow field prediction based on the deep learning[J]. Acta Aerodynamica Sinica, 2019, 37(3): 462-469 (in Chinese).
[120]. 高正红, 王超. 飞行器气动外形设计方法研究与进展[J]. 空气动力学学报, 2017, 35(4): 516-528.
GAO Z H, WANG C. Aerodynamic shape design methods for aircraft: status and trends[J]. Acta Aero-dynamica Sinica, 2017, 35(4): 516-528 (in Chinese).
[121]. LIGHTHILL M J. A new method of two-dimensional aerodynamic design[J]. R&M1111, Aer-onautical Research Council, 1945.
[122]. TAKANASHI S. Iterative three-dimensional transonic wing design using integral equations[J]. Journal of aircraft, 1985, 22(8): 655-660.
[123]. DULIKRAVICH G, BAKER D. Aerodynamic shape inverse design using a Fourier series meth-od[C]//37th Aerospace sciences meeting and exhibit. 1999: 185.
[124]. 李焦赞, 高正红, 詹浩. 基于目标压力分布优化的翼型反设计方法研究[J]. 弹箭与制导学报, 2008, 28(1): 187-190.
LI J Z, GAO Z H, ZHAN H, et al. Study on inverse design method of airfoil based on optimization of tar-get pressure distribution[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(1): 187-190 (in Chinese).
[125]. 李焦赞. 基于目标压力分布优化的翼型反设计方法研究[D]. 西安: 西北工业大学, 2007.
LI J Z. Study on inverse design method of airfoil based on optimization of target pressure distribu-tion[D]. Xi’an: Northwestern Polytechnical University, 2007 (in Chinese).
[126]. 尚克明. 直升机旋翼翼型的气动设计方法研究[D]. 南京: 南京航空航天大学, 2009.
SHANG K M. Research on aerodynamic design method for helicopter rotor airfoils[D]. Nanjing: Nan-jing University of Aeronautics and Astronautics, 2009 (in Chinese).
[127]. 刘浩, 徐敏, 叶茂. 基于特征正交分解的跨声速流场重构和翼型反设计方法研究[J]. 空气动力学学报, 2012, 30(4): 539-545.
LIU H, XU M, YE M. Investigation of transonic flow field reconstruction and inverse airfoil design based on proper orthogonal decomposition ROM[J]. Acta Aerodynamica Sinica, 2012, 30(4): 539-545 (in Chi-nese).
[128]. 白俊强, 邱亚松, 华俊. 改进型 Gappy POD 翼型反设计方法[J]. 航空学报, 2013, 34(4): 762-771.
BAI J Q, QIU Y S, HUA J. Improved airfoil inverse design method based on Gappy POD[J]. Acta Aero-nautica et Astronautica Sinica, 2013, 34(4): 762-771 (in Chinese).
[129]. 刘俊, 宋文萍, 韩忠华, 等. Kriging模型在翼型反设计中的应用研究[J]. 空气动力学学报, 2014, 32(04): 518-526.
LIU J, SONG W P, HAN Z H, et al. Kriging-based airfoil inverse design[J] . Acta Aerodynamica Sinica, 2014, 32(04): 518-526 (in Chinese).
[130]. 何磊, 钱炜祺, 刘滔. 基于深度学习的翼型反设计方法[J]. 航空动力学报, 2020, 35(9): 1909-1917.
HE L, QIAN W Q, LIU T. Inverse design method of airfoil based on deep learning[J]. Journal of Aero-space Power, 2020, 35(9): 1909-1917 (in Chinese).
[131]. CHEN W, AHMED F. Padgan: Learning to generate high-quality novel designs[J]. Journal of Mechanical Design, 2021, 143(3): 031703.
[132]. TAN X, MANNA D, CHATTORAJ J, et al. Airfoil Inverse Design using Conditional Generative Adversarial Networks[C]//2022 17th International Conference on Control, Automation, Robotics and Vi-sion (ICARCV). IEEE, 2022: 143-148.
[133]. ACHOUR G, SUNG W J, PINON-FISCHER O J, et al. Development of a conditional generative ad-versarial network for airfoil shape optimiza-tion[C]//AIAA Scitech 2020 Forum. 2020: 2261.
[134]. YILMAZ E, GERMAN B. Conditional genera-tive adversarial network framework for airfoil inverse design[C]//AIAA aviation 2020 forum. 2020: 3185.
[135]. YONEKURA K, WADA K, SUZUKI K. Gen-erating various airfoil shapes with required lift coeffi-cient using conditional variational autoencoders[J]. arXiv preprint arXiv:2106.09901, 2021.
[136]. YONEKURA K, MIYAMOTO N, SUZUKI K. Inverse airfoil design method for generating varieties of smooth airfoils using conditional WGAN-gp[J]. Structural and Multidisciplinary Optimization, 2022, 65(6): 173.
[137]. YONEKURA K, TOMORI Y, SUZUKI K. Air-foil generation and feature extraction using the condi-tional VAE-WGAN-gp[J]. arXiv preprint arXiv:2311.05445, 2023.
[138]. CHATTORAJ J, WONG J C, ZEXUAN Z, et al. Tailoring Generative Adversarial Networks for Smooth Airfoil Design[J]. arXiv preprint arXiv:2404.11816, 2024.
[139]. NOBARI A H, CHEN W, AHMED F. Pcdgan: A continuous conditional diverse generative adversarial network for inverse design[C]//Proceedings of the 27th ACM SIGKDD conference on knowledge dis-covery & data mining. 2021: 606-616.
[140]. ZHAO Y X, ZHANG P, SUN G P, et al. CcDPM: A Continuous Conditional Diffusion Proba-bilistic Model for Inverse Design[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2024, 38(15): 17033-17041.
[141]. 吴明雨, 陈志华, 邱志明, 等. 条件生成对抗网络的翼型反设计方法[J]. 宇航学报, 2023, 44(10): 1512-1521.
[142]. YONEKURA K, SUZUKI K. Data-driven de-sign exploration method using conditional variational autoencoder for airfoil design[J]. Structural and Mul-tidisciplinary Optimization, 2021, 64(2): 613-624.
[143]. CHEN Q Y, WANG J, POPE P, et al. Inverse design of two-dimensional airfoils using conditional generative models and surrogate log-likelihoods[J]. Journal of Mechanical Design, 2022, 144(2): 021712.
[144]. 王超杰, 何磊, 李川, 等. 基于注意力机制的翼型反设计方法[J]. 航空动力学报, 2024, 39: 1-8.
WANG C J, HE L, LI C, et al. Airfoil reverse design method based on self-attention mechanism[J]. Journal of Aerospace Power, 2024, 39: 1-8 (in Chinese).
[145]. JIN S Y, CHEN S S, CHE S Q, et al. Airfoil aerodynamic/stealth design based on conditional gen-erative adversarial networks[J]. Physics of Fluids, 2024, 36(7): 077146.
[146]. SEKAR V, ZHANG M Q, SHU C, et al. Inverse design of airfoil using a deep convolutional neural network[J]. AIAA Journal, 2019, 57(3): 993-1003.
[147]. WANG J, LI R Z, HE C, et al. An inverse de-sign method for supercritical airfoil based on condi-tional generative models[J]. Chinese Journal of Aero-nautics, 2022, 35(3): 62-74.
[148]. LEI R W, BAI J Q, WANG H, et al. Deep learn-ing based multistage method for inverse design of su-percritical airfoil[J]. Aerospace Science and Technol-ogy, 2021, 119: 107101.
[149]. YANG S, LEE S, YEE K. Inverse design opti-mization framework via a two-step deep learning ap-proach: application to a wind turbine airfoil[J]. Engi-neering with Computers, 2023, 39(3): 2239-2255.
[150]. WANG C, WANG S Y, WANG L Y, et al. Framework of nacelle inverse design method based on improved generative adversarial networks[J]. Aero-space Science and Technology, 2022, 121: 107365.
[151]. 陈树生, 林家豪, 翟丽君, 等. 基于生成式扩散模型的飞行器气动电磁耦合设计方法[P]. 陕西省: CN202410450684.
[152]. 杨才东, 李承阳, 李忠博, 等. 深度学习的图像超分辨率重建技术综述[J]. 计算机科学与探索, 2022, 16(09): 1990-2010.
YANG C D, LI C Y, LI Z B, et al. Review of image super-resolution reconstruction algorithms based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(09): 1990-2010 (in Chinese).
[153]. 许钦. 基于深度学习的湍流超分辨率算法研究[D]. 桂林: 广西师范大学, 2023.
XU Q. Research on turbulent super-resolution algo-rithm based on deep learning[D]. Guilin: Guangxi Normal University, 2023 (in Chinese).
[154]. 聂涛. 基于最大后验概率的视频超分辨率算法研究[D]. 杭州: 浙江大学, 2014.
NIE T. Research on video super-resolution algorithm based on maximum a posteriori[D]. Hangzhou: Zhejiang University, 2014 (in Chinese).
[155]. 白旭,卜丽静,赵国忱,等.多特征的POCS图像超分辨率重建方法[J].测绘科学,2022,47(12):174-183.
BAI X, BU L J, ZHAO G C, et al. .POCS image su-per-resolution reconstruction method based on multi-feature[J]. Science of Surveying and Mapping, 2022, 47(12): 174-183 (in Chinese).
[156]. 李展, 陈清亮, 彭青玉, 等. 基于MAP的单帧字符图像超分辨率重建[J]. 电子学报, 2015, 43(01): 191-197.
LI Z, CHEN Q L, PENG Q Y, et al. MAP-based sin-gle-frame super-resolution reconstruction for charac-ter image[J]. Acta Electronica Sinica, 2015, 43(01): 191-197 (in Chinese).
[157]. 韩阳, 朱军鹏, 郭春雨, 等. 基于扩散模型的流场超分辨率重建方法[J]. 力学学报, 2023, 55(10): 2309-2320.
HAN Y, SONG J P, GUO C Y, et al. A flow field su-per-resolution reconstruction method based on diffu-sion model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2309-2320 (in Chinese).
[158]. ERICHSON N B, MATHELIN L, YAO Z W, et al. Shallow neural networks for fluid flow reconstruc-tion with limited sensors[J]. Proceedings of the Royal Society A, 2020, 476(2238): 20200097.
[159]. NAIR N J, GOZA A. Leveraging reduced-order models for state estimation using deep learning[J]. Journal of Fluid Mechanics, 2020, 897: R1.
[160]. 田野, 邓雪, 郭明明, 等. 深度学习技术在超燃冲压发动机流场分析中应用研究[J]. 防护工程, 2024, 46(02): 26-35.
TIAN Y, DENG X, GUO M M, et al. Application re-search of deep learning technology in flow field anal-ysis of scramjet engines[J]. Protective Engineering, 2024, 46(02): 26-35 (in Chinese).
[161]. 陈皓, 郭明明, 田野, 等. 卷积神经网络在流场重构研究中的进展[J]. 力学学报, 2022, 54(9): 2343-2360.
CHEN H, GUO M M, TIAN Y, et al. Progress of convolution neural networks in flow field reconstruc-tion[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2343-2360 (in Chinese).
[162]. GüEMES A, DISCETTI S, IANIRO A, et al. From coarse wall measurements to turbulent velocity fields through deep learning[J]. Physics of fluids, 2021, 33(7): 075121.
[163]. LEE J, LEE S, YOU D. Deep learning approach in multi-scale prediction of turbulent mixing-layer[J]. arXiv preprint arXiv:1809.07021, 2018.
[164]. FUKAMI K, FUKAGATA K, TAIRA K. Super-resolution analysis via machine learning: a survey for fluid flows[J]. Theoretical and Computational Flu-id Dynamics, 2023, 37(4): 421-444.
[165]. LI R, SONG B Y, CHEN Y R, et al. Deep learn-ing reconstruction of high-Reynolds-number turbulent flow field around a cylinder based on limited sen-sors[J]. Ocean Engineering, 2024, 304: 117857.
[166]. LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a genera-tive adversarial network[C]//Proceedings of the IEEE conference on computer vision and pattern recogni-tion. 2017: 4681-4690.
[167]. DENG Z W, HE C X, LIU Y Z, et al. Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework[J]. Physics of Fluids, 2019, 31(12): 125111.
[168]. JEON Y, YOU D. Super-resolution reconstruc-tion of transitional boundary layers using a deep neu-ral network[J]. International Journal of Aeronautical and Space Sciences, 2023, 24(4): 1015-1031.
[169]. BODE M, GAUDING M, LIAN Z Y, et al. Us-ing physics-informed enhanced super-resolution gen-erative adversarial networks for subfilter modeling in turbulent reactive flows[J]. Proceedings of the Com-bustion Institute, 2021, 38(2): 2617-2625.
[170]. GAUDING M, BODE M. Using physics-informed enhanced super-resolution generative adver-sarial networks to reconstruct mixture fraction statis-tics of turbulent jet flows[C]//High Performance Computing: ISC High Performance Digital 2021 In-ternational Workshops, Frankfurt am Main, Germany, June 24–July 2, 2021, Revised Selected Papers 36. Springer International Publishing, 2021: 138-153.
[171]. YOUSIF M Z, YU L Q, LIM H C. Super-resolution reconstruction of turbulent flow fields at various Reynolds numbers based on generative adver-sarial networks[J]. Physics of Fluids, 2022, 34(1): 015130.
[172]. YOUSIF M Z, YU L Q, LIM H C. High-fidelity reconstruction of turbulent flow from spatially limited data using enhanced super-resolution generative ad-versarial network[J]. Physics of Fluids, 2021, 33(12): 125119.
[173]. XU W J, LUO W Y, WANG Y, et al. Data-driven three-dimensional super-resolution imaging of a turbulent jet flame using a generative adversarial network[J]. Applied Optics, 2020, 59(19): 5729-5736.
[174]. WERHAHN M, XIE Y, CHU M Y, et al. A mul-ti-pass GAN for fluid flow super-resolution[J]. Pro-ceedings of the ACM on Computer Graphics and In-teractive Techniques, 2019, 2(2): 1-21.
[175]. XIE Y, FRANZ E, CHU M Y, et al. tempogan: A temporally coherent, volumetric gan for super-resolution fluid flow[J]. ACM Transactions on Graphics (TOG), 2018, 37(4): 1-15.
[176]. KIM H, KIM J, WON S, et al. Unsupervised deep learning for super-resolution reconstruction of turbulence[J]. Journal of Fluid Mechanics, 2021, 910: A29.
[177]. 陈皓, 郭明明, 田野, 等. 超燃冲压发动机燃烧室流场超分辨率重建[J]. 推进技术, 2024, 45(01): 179-189.
CHEN H, GUO M M, TIAN Y, et al. Super resolution reconstruction of flow field in scramjet combustor[J]. Journal of Propulsion Technology, 2024, 45(1): 2208059 (in Chinese).
[178]. Qi J H, Ma H B. A Combined Model of Diffu-sion Model and Enhanced Residual Network for Su-per-Resolution Reconstruction of Turbulent Flows[J]. Mathematics, 2024, 12(7): 1028.
[179]. SHU D L, LI Z J, FARIMANI A B. A physics-informed diffusion model for high-fidelity flow field reconstruction[J]. Journal of Computational Physics, 2023, 478: 111972.
[180]. SHAN S M, WANG P K, CHEN S, et al. PiRD: Physics-informed Residual Diffusion for Flow Field Reconstruction[J]. arXiv preprint arXiv:2404.08412, 2024.
[181]. BAO K R, ZHANG X Y, PENG W, et al. Deep learning method for super-resolution reconstruction of the spatio-temporal flow field[J]. Advances in Aero-dynamics, 2023, 5(1): 19.
[182]. YANG F Z, YANG H, FU J L, et al. Learning texture transformer network for image super-resolution[C]//Proceedings of the IEEE/CVF confer-ence on computer vision and pattern recognition. 2020: 5791-5800.
[183]. LI X, YANG Z, YANG H. Hybrid-attention-based Swin-Transformer super-resolution reconstruc-tion for tomographic particle image velocimetry[J]. Physics of Fluids, 2024, 36(6) 065132.
[184]. ZENG K, ZHANG Y, XU H, et al. Super-resolution reconstruction of turbulent flows with a hybrid framework of attention[J]. Physics of Fluids, 2024, 36(6): 065107.
[185]. 刘杨. 基于深度学习的流场原位可视化关键技术研究[D]. 长沙: 国防科技大学, 2020.
LIU Y. Research on flow in situ visualization based on deep learning[D]: Changsha: National University of Defense Technology, 2020 (in Chinese).
[186]. LIU Y, WANG Y Q, DENG L, et al. A novel in situ compression method for CFD data based on gen-erative adversarial network[J]. Journal of Visualiza-tion, 2019, 22: 95-108.
[187]. BUZZICOTTI M, BONACCORSO F, DI LEONI P C, et al. Reconstruction of turbulent data with deep generative models for semantic inpainting from TURB-Rot database[J]. Physical Review Fluids, 2021, 6(5): 050503.
[188]. POST J. The next generation air transportation system of the United States: vision, accomplishments, and future directions[J]. Engineering, 2021, 7(4): 427-430.
[189]. BOLI? T, RAVENHILL P. SESAR: The past, present, and future of European air traffic manage-ment re-search[J]. Engineering, 2021, 7(4): 448-451.
[190]. 郭正玉, 刘浩宇, 苏雨. 空战目标轨迹预测技术研究综述[J]. 航空兵器, 2024, 31(2): 32-43.
GUO Z Y, LIU H Y, SU Y. Review of Research on airborne target trajectory prediction technology[J]. Aero Weaponry, 2024, 31(2): 32-43. (in Chinese)
[191]. 乔少杰, 韩楠, 朱新文, 等. 基于卡尔曼滤波的动态轨迹预测算法[J]. 电子学报, 2018, 46(02): 418-423.
QIAO S J, HAN N, ZHU X W, et al. A dynamic tra-jectory prediction algorithm based on Kalman filter[J]. ACTA ELECTRONICA SINICA, 2018, 46(02): 418-423. (in Chinese)
[192]. 郑天宇, 姚郁, 贺风华. 基于可学习EKF的高超声速飞行器航迹估计[J]. 哈尔滨工业大学学报, 2020, 52(06): 160-170.
ZHENG T Y, YAO Y, HE F H. Trajectory estimation of a hypersonic flight vehicle via L-EKF[J]. Journal of Harbin Institute of Technology, 2020, 52(06): 160-170.
[193]. MATHEW W, RAPOSO R, MARTINS B. Pre-dicting future locations with hidden Markov mod-els[C]//Proceedings of the 2012 ACM conference on ubiquitous computing. 2012: 911-918.
[194]. 翟岱亮, 雷虎民, 李炯, 等. 基于自适应IMM的高超声速飞行器轨迹预测[J]. 航空学报, 2016, 37(11): 3466-3475.
ZHAI D L, LEI H M, LI J, et al. Trajectory prediction of hypersonic vehicle based on adaptive IMM[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3466-3475. (in Chinese)
[195]. TASTAMBEKOV K, PUECHMOREL S, DELAHAYE D, et al. Aircraft trajectory forecast-ing using local functional regression in Sobolev space[J]. Transportation research part C: emerging technologies, 2014, 39: 1-22.
[196]. 奚之飞, 徐安, 寇英信, 等. 基于改进粒子群算法辨识Volterra级数的目标机动轨迹预测[J]. 航空学报, 2020, 41(12): 324183.
XI Z F, XU A, KOU Y X, et al. Target maneuvering trajectory prediction based on Volterra series identi-fied by improved particle swarm algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 324183. (in Chinese)
[197]. 张宏鹏, 黄长强, 唐上钦, 等. 基于卷积神经网络的无人作战飞机飞行轨迹实时预测[J]. 兵工学报, 2020, 41(09): 1894-1903.
ZHANG H P, HUANG C Q, TANG S Q, et al. CNN-based real-time prediction method of flight trajectory of unmanned combat aerial vehicle[J]. Acta Arma-mentarii, 2020, 41(09): 1894-1903. (in Chinese)
[198]. ZENG W L, QUAN Z B, ZHAO Z Y, et al. A deep learning approach for aircraft trajectory predic-tion in terminal airspace[J]. IEEE Access, 2020, 8: 151250-151266.
[199]. 石庆研, 岳聚财, 韩萍, 等. 基于LSTM-ARIMA模型的短期航班飞行轨迹预测[J]. 信号处理, 2019, 35(12): 2000-2009.
SHI Q Y, YUE J C, HAN P, et al. Short-term flight trajectory prediction based on LSTM-ARIMA mod-el[J]. Journal of Signal Processing, 2019, 35(12): 2000-2009. (in Chinese)
[200]. 崔亚奇, 熊伟, 何友. 不确定航迹自适应预测模型[J]. 航空学报, 2019, 40(5): 322557.
CUI Y Q, XIONG W, HE Y. Adaptive forecast model for uncertain track[J]. Acta Aeronautica et Astro-nautica Sinica, 2019, 40(5): 322557. (in Chinese)
[201]. LIU Y H, WANG H T, FAN J X, et al. Control-oriented UAV highly feasible trajectory planning: A deep learning method[J]. Aerospace Science and Technology, 2021, 110: 106435.
[202]. MA L, TIAN S. A hybrid CNN-LSTM model for aircraft 4D trajectory prediction[J]. IEEE access, 2020, 8: 134668-134680.
[203]. ZHONG G, ZHANG H H, ZHOU J Y, et al. Short-term 4D trajectory prediction for UAV based on spatio-temporal trajectory clustering[J]. IEEE Access, 2022, 10: 93362-93380.
[204]. 孔建国, 李亚彬, 张时雨, 等. 基于CNN-LSTM-attention模型航迹预测研究[J]. 航空计算技术, 2023, 53(1): 1-5.
KONG J G,LI Y B,ZHANG S Y, et al. Research on track prediction based on CNN-LSTM-attention Model[J]. Aeronautical Computing Technique, 2023, 53(1): 1-5. (in Chinese)
[205]. 王堃, 周志崇, 曲凯, 等. 基于注意力机制的CNN-LSTM模型的航迹预测[J]. 空军工程大学学报, 2023, 24(6): 50-57.
WANG K, ZHOU Z C, QU K, et al. Real-time track prediction of CNN-LSTM model based on attention mechanism[J]. Journal of Air Force Engineering Uni-versity, 2023, 24(6): 50-57. (in Chinese)
[206]. 李战武, 张帅, 乔英峰, 等. 基于自注意力机制和CNN-LSTM的空战目标机动轨迹预测[J]. 兵器装备工程学报, 2023, 44(07): 209-216.
LI Z W, ZHANG S, QIAO Y F, et al. Maneuvering trajectory prediction of air combat targets based on self-attention mechanism and CNN-LSTM[J]. Journal of Ordnance Equipment Engineering, 2023, 44(07): 209-216. (in Chinese)
[207]. 方伟, 汤淼, 闫文君, 等. 基于残差神经网络和LSTM的飞行轨迹预测[J]. 舰船电子工程, 2023, 43(10): 42-46.
FANG W, TANG M, YAN W J, et al. Flight trajectory prediction based on residual neural network and LSTM[J]. Ship Electronic Engineering, 2023, 43(10): 42-46. (in Chinese)
[208]. 王硕, 吴楠, 黄洁, 等, 基于残差修正CNN-BiLSTM的空中目标航迹短期预测算法[J].指挥控制与仿真, 2024, 46(1): 55-63.
WANG S, WU N, HUANG J, et al. Short-term predic-tion algorithm of air target track based on residual correction CNN-BiLSTM[J]. Command Control & Simulation, 2024, 46(1): 55-63. (in Chinese)
[209]. 张飞桥, 张亦驰, 严皓. 基于改进卷积网络的终端区4D航迹预测与冲突检测[J]. 科学技术与工程, 2024, 24(5): 2150-2157.
ZHANG F Q, ZHANG Y C, YAN H. Improved con-volutional network based 4D trajectory prediction and conflict detection in terminal areas[J] Science Tech-nology and Engineering, 2024, 24(5): 2150-2157. (in Chinese)
[210]. WU X P, YANG H Y, CHEN H, et al. Long-term 4D trajectory prediction using generative adver-sarial networks[J]. Transportation Research Part C: Emerging Technologies, 2022, 136: 103554.
[211]. XIANG J, XIE J, CHEN J. Landing Trajectory Prediction for UAS Based on Generative Adversarial Net-work[C]//AIAA SCITECH 2023 Forum. 2023: 0127.
[212]. 陈玉立, 佟强, 谌彤童, 等. 基于注意力机制和生成对抗网络的飞行器短期航迹预测模型[J]. 计算机应用, 2022, 42(10): 3292-3299.
CHEN Y L, TONG Q, CHEN T T, et al. Short-term trajectory prediction model of aircraft based on atten-tion mechanism and generative adversarial network[J]. Journal of Computer Applications, 2022, 42(10): 3292-3299. (in Chinese)
[213]. ZHANG H Y, LIU Z Z. Four-Dimensional Air-craft Trajectory Prediction Based on Generative Deep Learn-ing[J]. Journal of Aerospace Information Sys-tems, 2024: 1-13.
[214]. TONG Q, HU J Q, CHEN Y L, et al. Long-term trajectory prediction model based on Transformer[J]. IEEE Access, 2023.
[215]. DONG X C, TIAN Y, NIU K X, et al. Research on flight trajectory prediction method based on trans-form-er[C]//International Conference on Smart Trans-portation and City Engineering (STCE 2023). SPIE, 2024, 13018: 1403-1409.
[216]. VOS R W, SUN J, HOEKSTRA J M. A Trans-former-based Trajectory Prediction Model to Support Air Traffic Demand Forecasting[C]//International Conference on Research in Air Transportation. 2024: ICRAT 2024-87.
[217]. ZHANG W X, PAYAN A, MAVRIS D. Aircraft Trajectory Prediction in Terminal Airspace Through Deep Learning Approaches[C]//AIAA AVIATION FORUM AND ASCEND 2024. 2024: 4649.
[218]. 狄子琦, 王翔宇, 吴双, 等. 基于Transformer架构的高超声速飞行器轨迹生成与预测算法[J]. 空天防御, 2023, 6(04): 35-41.
DI Z Q, WANG X Y, WU S, et al. An algorithm for trajectory generation and prediction of hypersonic ve-hicle based on Transformer architecture[J]. AIR & SPACE DEFENSE, 2023, 6(04): 35-41. (in Chinese)
[219]. SILVESTRE J, MIELGO P, BREGON A, et al. Multi-route aircraft trajectory prediction using Tem-poral Fusion Transformers[J]. IEEE Access, 2024.
[220]. LUO A F, LUO Y X, LIU H, et al. An improved transformer-based model for long-term 4D trajectory pre-diction in civil aviation[J]. IET Intelligent Transport Systems, 2024.
[221]. HASHEMI S M, HASHEMI S A, BOTEZ R M, et al. Aircraft trajectory prediction enhanced through resilient generative adversarial networks secured by blockchain: Application to UAS-S4 Ehécatl. Appl. Sci. 2023, 13, 9503.
[222]. LIU Y L, HANSEN M. Predicting aircraft tra-jectories: A deep generative convolutional recurrent neural networks approach[J]. arXiv preprint arXiv:1812.11670, 2018.
[223]. PANG Y T, LIU Y M. Conditional generative adversarial networks (CGAN) for aircraft trajectory predic-tion considering weather effects[C]//AIAA Scitech 2020 Forum. 2020: 1853.
[224]. YEH S T, DU X S. Optimal Tilt-Wing eVTOL Takeoff Trajectory Prediction Using Regression Gen-erative Adversarial Networks[J]. Mathematics, 2023, 12(1): 26.
[225]. YEH S T, DU X S. Transfer-Learning-Enhanced Regression Generative Adversarial Networks for Op-timal eVTOL Takeoff Trajectory Prediction[J]. Elec-tronics, 2024, 13(10): 1911.
[226]. WANG Y H, CHEN Y Y, YU R, et al. Coopera-tive Trajectory Prediction of UAVs via Generative Adversar-ial Networks[C]//IECON 2023-49th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2023: 1-6.
[227]. 张百川, 毕文豪, 张安, 等. 基于Transformer模型的空战飞行器轨迹预测误差补偿方法[J]. 航空学报, 2023, 44(9): 327413.
ZHANG B C, BI W H, ZHANG A, et al. Transform-er-based error compensation method for air combat aircraft trajectory prediction[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 327413. (in Chinese)
[228]. 石争浩, 仵晨伟, 李成建, 等. 航空遥感图像深度学习目标检测技术研究进展[J]. 中国图象图形学报, 2023, 28(09): 2616-2643.
Shi Z H, Wu C W, Li C J, et al. Object detection tech-niques based on deep learning for aerial remote sens-ing images: a survey[J]. Journal of Image and Graphics, 2023, 28(09): 2616-2643. (in Chinese)
[229]. 耿创, 宋品德, 曹立佳. YOLO算法在目标检测中的研究进展[J]. 兵器装备工程学报, 2022, 43(09): 162-173.
GENG C, SONG P D, CAO L J. Research progress of YOLO algorithm in target detection[J]. Journal of Ordnance Equipment Engineering, 2022, 43(09): 162-173. (in Chinese)
[230]. 裴伟, 许晏铭, 朱永英, 等. 改进的SSD航拍目标检测方法[J]. 软件学报, 2019, 30(03): 738-758.
PEI W, XU Y M, ZHU Y Y, et al. The target detection method of aerial photography images with improved SSD[J]. Journal of Software, 2019, 30(03): 738-758. (in Chinese)
BOUDJIT K, RAMZAN N. Human detection based on deep learning YOLO-v2 for real-time UAV appli-ca-tions[J]. Journal of Experimental & Theoretical Ar-tificial Intelligence, 2022, 34(3): 527-544.
[231]. BOUDJIT K, RAMZAN N. Human detection based on deep learning YOLO-v2 for real-time UAV applica-tions[J]. Journal of Experimental & Theoreti-cal Artificial Intelligence, 2022, 34(3): 527-544.
[232]. SHASHANK A, SAJITHVARIYAR V V, SOWMYA V, et al. Identifying epiphytes in drones photos with a conditional generative adversarial net-work (C-GAN)[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Infor-mation Sciences, 2020, 44: 99-104.
[233]. CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transform-ers[C]//European conference on computer vision. Cham: Springer International Publishing, 2020: 213-229.
[234]. LEBEDEV M A, VIZILTER Y V, VYGOLOV O V, et al. Change detection in remote sensing images using conditional adversarial networks[J]. The Inter-national Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, 42: 565-571.
[235]. Niu X D, Gong M G, Zhan T, et al. A condition-al adversarial network for change detection in hetero-gene-ous images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 16(1): 45-49.
[236]. ZHANG Y H, SUN H, ZUO J W, et al. Aircraft type recognition in remote sensing images based on feature learning with conditional generative adversar-ial networks[J]. Remote Sensing, 2018, 10(7): 1123.
[237]. LI R, PENG Y, YANG Q Q. Fusion enhance-ment: UAV target detection based on multi-modal GAN[C]//2023 IEEE 7th Information Technology and Mechatronics Engineering Conference (ITOEC). IEEE, 2023, 7: 1953-1957.
[238]. REN K, GAO Y, WAN M J, et al. Infrared small target detection via region super resolution generative adversarial network[J]. Applied Intelligence, 2022, 52(10): 11725-11737.
[239]. SALAUDEEN H, ?ELEBI E. Pothole detection using image enhancement GAN and object detection net-work[J]. Electronics, 2022, 11(12): 1882.
[240]. RABBI J, RAY N, SCHUBERT M, et al. Small-object detection in remote sensing images with end-to-end edge-enhanced GAN and object detector net-work[J]. Remote Sensing, 2020, 12(9): 1432.
[241]. WANG J Y, LI Y N, CHEN W X. UAV aerial image generation of crucial components of high-voltage transmission lines based on multi-level gener-ative adversarial network[J]. Remote Sensing, 2023, 15(5): 1412.
[242]. LI J N, LIANG X D, WEI Y C, et al. Perceptual generative adversarial networks for small object de-tec-tion[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1222-1230.
[243]. Y???T S, YILDIRIM T. Improving object de-tection of UAV images with Real-ESRGAN[J]. Re-cent Adv Sci Eng, 2023, 3(2): 33?39.
[244]. XI Y, JIA W J, ZHENG J B, et al. DRL-GAN: Dual-stream representation learning GAN for low-resolution image classification in UAV applica-tions[J]. IEEE Journal of selected topics in applied earth observations and remote sensing, 2020, 14: 1705-1716.
[245]. Li X, Duan H B, Tian Y L, et al. Exploring im-age generation for UAV change detection[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(6): 1061-1072.
[246]. BOSQUET B, CORES D, SEIDENARI L, et al. A full data augmentation pipeline for small object de-tec-tion based on generative adversarial networks[J]. Pattern Recognition, 2023, 133: 108998.
[247]. 雷毅飞, 王露禾, 贺泊茗, 等. 基于深度强化学习的多无人机空战机动策略研究[J]. 航空科学技术, 2024, 35(03): 111-118.
LEI Y F, WANG L H, HE B M, et al. Research on multi-UAV air combat maneuver strategy based on deep reinforcement learning[J].Aeronautical Science & Technology, 2024, 35(03): 111-118. (in Chinese)
[248]. 杨志鹏, 林松, 曾长, 等. 基于深度强化学习的多飞行器自适应协同航路规划[J]. 战术导弹技术, 2024, (02): 106-116.
YANG Z P, LIN S, ZENG C, et al. Multi-aircraft adaptive cooperative route planning based on deep rein-forcement learning[J]. Tactical Missile Technolo-gy, 2024, (02): 106-116. (in Chinese)
[249]. 丁溶, 曹承钰, 李繁飙, 等. 基于深度强化学习的变外形飞行器姿态控制[J]. 航天控制, 2024, 42(02): 55-61.
DING R, CAO C Y, LI F B, et al. Attitude control of morphing vehicle based on deep reinforcement learn-ing[J]. Aerospace Control, 2024, 42(02): 55-61. (in Chinese)
[250]. 白成超, 张琦, 谢旭东, 等. 面向复杂决策的OODA环:智能赋能与认知增强[J]. 指挥与控制学报, 2024, 10(03): 284-297.
BAI C C, ZHANG Q, XIE X D, et al. OODA ring theory for complex decision-making: intelligent em-powerment and cognitive enhancement[J]. Journal of Command and Control, 2024, 10(03): 284-297. (in Chinese)
文章导航

/