飞行器设计生成式模型专栏

生成式模型赋能飞行器技术应用研究进展与展望

  • 陈树生 ,
  • 贾苜梁 ,
  • 林家豪 ,
  • 金世轶 ,
  • 高正红 ,
  • 王岳青 ,
  • 马志强 ,
  • 李铮 ,
  • 段辰龙 ,
  • 李佳伟
展开
  • 1.西北工业大学 航空学院,西安 710072
    2.飞行器基础布局全国重点实验室,西安 710072
    3.中国空气动力研究与发展中心 计算空气动力研究所,绵阳 621000
    4.空天飞行空气动力科学与技术全国重点实验室,绵阳 621000
    5.西北工业大学 航天学院,西安 710072
    6.中国运载火箭技术研究院 空间物理重点实验室,北京 100076
    7.中国航空研究院,北京 100029
    8.沈阳飞机设计研究所 扬州协同创新研究院有限公司,扬州 225000
.E-mail: yqwang2013@163.com

收稿日期: 2024-09-12

  修回日期: 2024-10-09

  录用日期: 2024-10-25

  网络出版日期: 2024-11-18

基金资助

国家自然科学基金(92371109);民机科研项目;西北工业大学“1-0”重大工程科学问题项目(G2024KY0613)

Empowering aircraft technology applications with generative models: Research progress and prospects

  • Shusheng CHEN ,
  • Muliang JIA ,
  • Jiahao LIN ,
  • Shiyi JIN ,
  • Zhenghong GAO ,
  • Yueqing WANG ,
  • Zhiqiang MA ,
  • Zheng LI ,
  • Chenlong DUAN ,
  • Jiawei LI
Expand
  • 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.National Key Laboratory of Aircraft Configuration Design,Xi’an 710072,China
    3.Computational Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China
    4.State Key Laboratory of Aerodynamics,Mianyang 621000,China
    5.School of Astronautics,Northwestern Polytechnical University,Xi’an 710072,China
    6.Science and Technology on Space Physics Laboratory,China Academy of Launch Vehicle Technology,Beijing 100076,China
    7.Chinese Aeronautical Establishment,Beijing 100029,China
    8.Yangzhou Collaborative Innovation Research Institute Co. Ltd,Shenyang Aircraft Design and Research Institute,Yangzhou 225000,China
E-mail: yqwang2013@163.com

Received date: 2024-09-12

  Revised date: 2024-10-09

  Accepted date: 2024-10-25

  Online published: 2024-11-18

Supported by

National Natural Science Foundation of China(92371109);Civil Aircraft Research Project;“1-0”Major Engineering Science Problem Project of Northwestern Polytechnical University(G2024KY0613)

摘要

在自然语言处理和计算机视觉领域取得颠覆性应用的生成式模型正成为数智化的新型技术基座,是未来驱动飞行器技术智能化发展的重要引擎。综述了生成式模型赋能飞行器技术应用进展。首先,总结了生成式模型架构的发展历程,详细介绍了变分自编码器、生成对抗网络、扩散模型、Transformer等基本原理架构和改进方向。其次,归纳了生成式模型在飞行器空气动力学、航迹预测和目标检测等领域的典型应用和变革情况;关注了参数化建模、气动预测模型、反设计等飞行器空气动力设计关键技术的发展趋势;探讨了实时航迹预测、完整航迹预测、协同航迹预测和预测误差补偿的智能实现方法;从现有目标检测方法改进角度分析了生成式模型在多尺度融合、超分辨率增强和数据增强中的作用。最后,从模型方法和应用场景拓展角度展望了生成式模型赋能飞行器技术未来的研究方向,针对构建可解释的通用大模型和推动垂直领域应用等方面提出了发展建议。

本文引用格式

陈树生 , 贾苜梁 , 林家豪 , 金世轶 , 高正红 , 王岳青 , 马志强 , 李铮 , 段辰龙 , 李佳伟 . 生成式模型赋能飞行器技术应用研究进展与展望[J]. 航空学报, 2025 , 46(10) : 631194 -631194 . DOI: 10.7527/S1000-6893.2024.31194

Abstract

Generative models, which have achieved disruptive applications in the fields of natural language processing and computer vision, are becoming the cornerstone of digital intelligence technologies, serving as a crucial engine driving the future development of intelligent aircraft technology. This paper reviews the application progress of aircraft technologies empowered with generative models. Firstly, the development history of generative model architectures is summarized. Detailed introduction to the fundamental principles and improvement directions of variational autoencoders, generative adversarial networks, diffusion models, and Transformers is provided. Secondly, typical applications and transformative impacts of generative models in aircraft aerodynamics, trajectory prediction, and target detection are generalized, with a focus on the development trends in key technologies of aircraft aerodynamic design, including parameterized modeling, aerodynamic prediction model and inverse design.Intelligent implementation methods of real-time trajectory prediction, complete trajectory prediction, collaborative trajectory prediction and prediction error compensation are studied. From the perspective of improving existing target detection methods, the roles of generative models in multi-scale fusion, super-resolution enhancement and data enhancement are analyzed. Finally, we propose future research directions for aircraft technologies empowered with generative models from the perspectives of model method and application scenario expansion. Development suggestions are proposed for building interpretable general models and promoting vertical domain applications.

参考文献

1 BUBECK S, CHANDRASEKARAN V, ELDAN R, et al. Sparks of artificial general intelligence: Early experiments with GPT-4[DB/OL]. arXiv preprint: 2303.12712, 2023.
2 王亚珅, 方勇, 江昊, 等. 2023年生成式人工智能技术主要发展动向分析[J]. 无人系统技术20247(2): 101-112.
  WANG Y S, FANG Y, JIANG H, et al. Main development trends of generative artificial intelligence technology in 2023[J]. Unmanned Systems Technology20247(2): 101-112 (in Chinese).
3 OOI K B, TAN G W, AL-EMRAN M, et al. The potential of generative artificial intelligence across disciplines: Perspectives and future directions[J]. Journal of Computer Information Systems202565(1): 76-107.
4 WANG H C, FU T F, DU Y Q, et al. Scientific discovery in the age of artificial intelligence[J]. Nature2023620(7972): 47-60.
5 陈树生, 贾苜梁, 刘衍旭, 等. 变体飞行器变形方式及气动布局设计关键技术研究进展[J]. 航空学报202445(6): 629595.
  CHEN S S, JIA M L, LIU Y X, et al. Deformation modes and key technologies of aerodynamic layout design for morphing aircraft: Review[J]. Acta Aeronautica et Astronautica Sinica202445(6): 629595 (in Chinese).
6 KINGMA D P, WELLING M. Auto-encoding variational Bayes[DB/OL]. arXiv preprint: 1312.6114, 2023.
7 GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]?∥ Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2. New York: ACM, 2014: 2672-2680.
8 SOHL-DICKSTEIN J, WEISS E, MAHESWARANA?THAN N, et al. Deep unsupervised learning using nonequilibrium thermodynamics[C]?∥ International Conference on Machine Learning. Lille: PMLR, 2015: 2256-2265.
9 VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems201730: 5998-6008.
10 LECUN Y, CHOPRA S, HADSELL R, et al. Energy-based models[M]?∥ Predicting Structured Data.Cambridge: The MIT Press, 2007: 191-246.
11 KINGMA D P, DHARIWAL P. Glow: Generative flow with invertible 1x1 convolutions[J]. Advances in Neural Information Processing Systems201831: 10236-10245.
12 MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: Representing scenes as neural radiance fields for view synthesis[C]?∥ Computer Vision-ECCV2020. Cham: Springer International Publishing, 2020: 405-421.
13 TU W J, DENG W J, GEDEON T, et al. A closer look at the robustness of contrastive language-image pre-training (CLIP)[C]?∥ Proceedings of the 37th International Conference on Neural Information Processing Systems.New York: ACM, 2023: 13678-13691.
14 任亚琪. 基于深度学习的scRNA-seq数据降维和聚类方法研究[D]. 长沙: 湖南大学, 2022.
  REN Y Q. Research on dimensionality reduction and clustering method of scRNA-seq data based on deep learning[D]. Changsha: Hunan University, 2022 (in Chinese).
15 郭秋燕, 胡磊, 代劲. 基于云模型的变分自编码器数据压缩方法[J]. 电子技术应用202349(10): 96-99.
  GUO Q Y, HU L, DAI J. Variational autoencoder data compression algorithm based on cloud model[J]. Application of Electronic Technique202349(10): 96-99 (in Chinese).
16 杨涛. 基于变分自编码器的文本生成模型研究[D]. 重庆: 西南大学, 2022.
  YANG T. Research on text generation model based on variational auto-encoder[D]. Chongqing: Southwest University, 2022 (in Chinese).
17 张志昂, 廖光忠. 改进变分自编码器的工业时序数据异常检测[J]. 计算机工程与设计202445(1): 17-23.
  ZHANG Z A, LIAO G Z. Anomaly detection of industrial time series data based on variational autoencoder[J]. Computer Engineering and Design202445(1): 17-23 (in Chinese).
18 谢胜利, 陈泓达, 高军礼, 等. 基于分布对齐变分自编码器的深度多视图聚类[J]. 计算机学报202346(5): 945-959.
  XIE S L, CHEN H D, GAO J L, et al. Deep multi-view clustering based on distribution aligned variational autoencoder[J]. Chinese Journal of Computers202346(5): 945-959 (in Chinese).
19 HIGGINS I, MATTHEY L, PAL A, et al. Beta-VAE: Learning basic visual concepts with a constrained variational framework[C]?∥ International ConferenceonLearning Representations, 2017.
20 BURGESS C P, HIGGINS I, PAL A, et al. Understanding disentangling in β-VAE[DB/OL]. arXiv preprint1804.03599, 2018.
21 RAMACHANDRA G. Least square variational Bayesian autoencoder with regularization[DB/OL]. arXiv preprint: 1707.03134, 2017.
22 TOLSTIKHIN I, BOUSQUET O, GELLY S, et al. Wasserstein auto-encoders[DB/OL]. arXiv preprint: 1711.01558, 2017.
23 SOHN K, YAN X C, LEE H, et al. Learning structured output representation using deep conditional generative models[C]?∥ Proceedings of the 29th International Conference on Neural Information Processing Systems-Volume 2. New York: ACM, 2015: 3483-3491.
24 BAO J M, CHEN D, WEN F, et al. CVAE-GAN: Fine-grained image generation through asymmetric training[C]?∥ 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2764-2773.
25 SHEN D H, CELIKYILMAZ A, ZHANG Y Z, et al. Towards generating long and coherent text with multi-level latent variable models[DB/OL]. arXiv preprint1902.00154, 2019.
26 LI R Z, ZHANG Y F, CHEN H X. Physically interpretable feature learning of supercritical airfoils based on variational autoencoders[J]. AIAA Journal202260(11): 6168-6182.
27 VAN DEN OORD A, VINYALS O, KAVUKCUOGLU K, et al. Neural discrete representation learning[C]?∥ Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017:6309-6318.
28 RAZAVI A, VAN DEN OORD A, VINYALS O. Generating diverse high-fidelity images with VQ-VAE-2[J]. Advances in Neural Information Processing Systems201932:14866-14876.
29 罗佳, 黄晋英. 生成式对抗网络研究综述[J]. 仪器仪表学报201940(3): 74-84.
  LUO J, HUANG J Y. Generative adversarial network: An overview[J]. Chinese Journal of Scientific Instrument201940(3): 74-84 (in Chinese).
30 张营营. 生成对抗网络模型综述[J]. 电子设计工程201826(5): 34-37, 43.
  ZHANG Y Y. A survey on generative adversarial networks[J]. Electronic Design Engineering201826(5): 34-37, 43 (in Chinese).
31 龚颖, 许文韬, 赵策, 等. 生成对抗网络在图像修复中的应用综述[J]. 计算机科学与探索202418(3): 553-573.
  GONG Y, XU W T, ZHAO C, et al. Review of application of generative adversarial networks in image restoration[J]. Journal of Frontiers of Computer Science and Technology202418(3): 553-573 (in Chinese).
32 张彬, 周粤川, 张敏, 等. 生成对抗网络改进角度与应用研究综述[J]. 计算机应用研究202340(3): 649-658.
  ZHANG B, ZHOU Y C, ZHANG M, et al. Review of research on improvement and application of generative adversarial networks[J]. Application Research of Computers202340(3): 649-658 (in Chinese).
33 NOWOZIN S, CSEKE B, TOMIOKA R, et al. f-GAN: Training generative neural samplers using variational divergence minimization?[J]. Advances in Neural Information Processing Systems201629: 271-279.
34 MAO X D, LI Q, XIE H R, et al. Least squares generative adversarial networks[C]?∥ 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2813-2821.
35 ZHAO J B, MATHIEU M, LECUN Y. Energy-based generative adversarial network[DB/OL]. arXiv preprint: 1609.03126, 2016.
36 ARJOVSKY M, CHINTALA S, BOTTOU L, et al. Wasserstein generative adversarial networks[C]?∥ Proceedings of the 34th International Conference on Machine Learning-Volume 70. New York: ACM, 2017: 214-223.
37 GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]?∥ Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 5769-5779.
38 QI G J. Loss-sensitive generative adversarial networks on lipschitz densities?[J]. International Journal of Computer Vision2020128(5): 1118-1140.
39 ODENA A. Semi-supervised learning with generative adversarial networks[DB/OL]. arXiv preprint: 1606.01583, 2016.
40 MIRZA M, OSINDERO S. Conditional generative adversarial nets[DB/OL]. arXiv preprint: 1411.1784, 2014.
41 CHEN X, DUAN Y, HOUTHOOFT R, et al. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets[J]. Advances in Neural Information Processing Systems201629: 2172-2180.
42 ZHANG H, XU T, LI H S, et al. StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks[C]∥ 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 5908-5916.
43 ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]?∥ 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2242-2251.
44 TOLSTIKHIN I O, GELLY S, BOUSQUET O, et al. AdaGAN: Boosting generative models[J]. Advances in Neural Information Processing Systems201730: 5424-5433.
45 GHOSH A, KULHARIA V, NAMBOODIRI V, et al. Multi-agent diverse generative adversarial networks[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8513-8521.
46 DURUGKAR I, GEMP I, MAHADEVAN S. Generative multi-adversarial networks[DB/OL]. arXiv preprint: 1611.01673, 2016.
47 RADFORD A, METZ L, CHINTALA S, et al. Unsupervised representation learning with deep convolutional generative adversarial networks[DB/OL]. arXiv preprint: 1511.06434, 2015.
48 LARSEN A B L, S?NDERBY S K, LAROCHELLE H, et al. Autoencoding beyond pixels using a learned similarity metric[C]?∥ Proceedings of the 33rd International Conference on International Conference on Machine Learning-Volume 48. New York: ACM, 2016: 1558-1566.
49 ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[DB/OL].arXiv preprint1805.08318, 2018.
50 ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]?∥ 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 5967-5976.
51 王正龙, 张保稳. 生成对抗网络研究综述[J]. 网络与信息安全学报20217(4): 68-85.
  WANG Z L, ZHANG B W. Survey of generative adversarial network[J]. Chinese Journal of Network and Information Security20217(4): 68-85 (in Chinese).
52 HO J, JAIN A, ABBEEL P, et al. Denoising diffusion probabilistic models[C]?∥ Proceedings of the 34th International Conference on Neural Information Processing Systems.New York: ACM, 2020: 6840-6851.
53 CROITORU F A, HONDRU V, IONESCU R T, et al. Diffusion models in vision: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence202345(9): 10850-10869.
54 SONG J M, MENG C L, ERMON S. Denoising diffusion implicit models[DB/OL]. arXiv preprint2010.02502, 2020.
55 ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]?∥ 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 10674-10685.
56 NICHOL A, DHARIWAL P. Improved denoising diffusion probabilistic models[DB/OL]. arXiv preprint: 2102.09672, 2021.
57 DHARIWAL P, NICHOL A, DHARIWAL P, et al. Diffusion models beat GANs on image synthesis[C]∥Proceedings of the 35th International Conference on Neural Information Processing Systems.New York: ACM, 2021: 8780-8794.
58 HO J, SALIMANS T. Classifier-free diffusion guidance[DB/OL]. arXiv preprint: 2207.12598, 2022.
59 SONG Y, ERMON S. Generative modeling by estimating gradients of the data distribution[J]. Advances in Neural Information Processing Systems201932:11918-11930.
60 SONG Y, SOHL-DICKSTEIN J, KINGMA D P, et al. Score-based generative modeling through stochastic differential equations[DB/OL]. arXiv preprint2011.13456, 2016.
61 DOSOVITSKIY A, BEYER L, KOLESNIKOV A,et al. Animage is worth 16x16 words: Transformers for image recognition at scale[C]∥ International Conference on Learning Representations, 2021.
62 LIU Z, LIN Y T, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2021: 9992-10002.
63 唐志共, 朱林阳, 向星皓, 等. 智能空气动力学若干研究进展及展望[J]. 空气动力学学报202341(7): 1-35.
  TANG Z G, ZHU L Y, XIANG X H, et al. Some research progress and prospect of intelligent aerodynamics[J]. Acta Aerodynamica Sinica202341(7): 1-35 (in Chinese).
64 MASTERS D A, TAYLOR N J, RENDALL T, et al. Review of aerofoil parameterisation methods for aerodynamic shape optimisation[C]?∥ 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015.
65 SUN J H, SONG W B. A unified learning model for airfoil geometry fitting and efficient optimization[C]∥AIAA SCITECH 2023 Forum. Reston: AIAA, 2023.
66 余婧, 蒋安林, 刘亮, 等. 基于PCA降维的气动外形参数化方法[J]. 航空学报202445(10): 129125.
  YU J, JIANG A L, LIU L, et al. PCA aerodynamic geometry parametrization method[J]. Acta Aeronautica et Astronautica Sinica202445(10): 129125 (in Chinese).
67 WU X J, ZHANG W W, PENG X H, et al. Benchmark aerodynamic shape optimization with the POD-based CST airfoil parametric method[J]. Aerospace Science and Technology201984: 632-640.
68 金世轶, 陈树生, 杨华, 等. 基于数据挖掘的翼型气动隐身多学科分析[J/OL]. 航空动力学报, (2024-10-12)[2025-03-07]. .
  JIN S Y, CHEN S S, YANG H, et al. Multi-disciplinary analysis of aerodynamics stealth of airfoil based on data mining[J/OL]. Journal of Aerospace Power, (2024-10-12)[2025-03-07]. (in Chinese).
69 陈树生, 金世轶, 林家豪, 等. 一种基于数据挖掘的翼型气动隐身设计规则提取方法: CN117787117A[P]. 2024-03-29.
  CHEN S S, JIN S Y, LIN J H . et al.A data mining based method for extracting aerodynamic stealth design rules for wing profiles: CN202311585346[P]. 2024-03-29 (in Chinese).
70 JIN S Y, CHEN S S, FENG C, et al. Deep learning for airfoil aerodynamic-electromagnetic coupling optimization with random forest[J]. Physics of Fluids202436(1): 017110.
71 KANG Y E, LEE D, YEE K. Physically interpretable airfoil parameterization using variational autoencoder-based generative modeling[C]?∥ AIAA SCITECH 2024 Forum. Reston: AIAA, 2024.
72 SWANNET K, VARRIALE C, DOAN N A K. Towards universal parameterization: Using variational autoencoders to parameterize airfoils[C]?∥ AIAA SCITECH 2024 Forum. Reston: AIAA, 2024.
73 XIE H R, WANG J, ZHANG M. Parametric generative schemes with geometric constraints for encoding and synthesizing airfoils[J]. Engineering Applications of Artificial Intelligence2024128: 107505.
74 CHEN W, FUGE M. BézierGAN: Automatic generation of smooth curves from interpretable low-dimensional parameters[DB/OL]. arXiv preprint1808.08871, 2018.
75 DU X S, HE P, MARTINS J R R A. Rapid airfoil design optimization via neural networks-based parameterization and surrogate modeling?[J]. Aerospace Science and Technology2021113: 106701.
76 CHEN W, CHIU K, FUGE M. Aerodynamic design optimization and shape exploration using generative adversarial networks[C]?∥ AIAA Scitech 2019 Forum. Reston:AIAA, 2019.
77 DU X S, HE P, MARTINS J R R A. A B-Spline-based generative adversarial network model for fast interactive airfoil aerodynamic optimization[C]?∥ AIAA Scitech 2020 Forum.Reston: AIAA, 2020.
78 CHEN W, RAMAMURTHY A. Deep generative model for efficient 3D airfoil parameterization and generation[C]?∥ AIAA Scitech 2021 Forum. Reston: AIAA, 2021.
79 LI J C, ZHANG M Q, TAY C M J, et al. Low-Reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes?[J]. Aerospace Science and Technology2022121: 107309.
80 LI J C, ZHANG M Q, MARTINS J R R A, et al. Efficient aerodynamic shape optimization with deep-learning-based geometric filtering?[J]. AIAA Journal202058(10): 4243-4259.
81 WANG Y Y, SHIMADA K, BARATI FARIMANI A. Airfoil GAN: Encoding and synthesizing airfoils for aerodynamic shape optimization[J]. Journal of Computational Design and Engineering202310(4): 1350-1362.
82 WEI Z, DUFOUR E R, PELLETIER C, et al. DiffAirfoil: An efficient novel airfoil sampler based on latent space diffusion model for aerodynamic shape optimization[C]?∥ AIAA Aviation Forum and Ascend 2024. Reston: AIAA, 2024.
83 RUH M L, LIU X B, YU R, et al. Airfoil shape parameterization using reconstruction-error-minimizing generative adversarial networks[C]?∥ AIAA Aviation 2023 Forum. Reston: AIAA, 2023.
84 CARPENTER M, HARTFIELD R, BURKHALTER J. A comprehensive approach to cataloging missile aerodynamic performance using surrogate modeling techniques and statistical learning[C]?∥ 29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011.
85 ?ETINER A E, YAGIZ B, GUZEL G, et al. CFD based response surface modeling with an application in missile aerodynamics[C]?∥ 34th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2016.
86 孙帅. 基于RBF方法的扑翼非定常气动特性数值研究[D]. 北京: 北京理工大学, 2014.
  SUN S. A numerical study of unsteady aerodynamic characteristics of flapping wing based on RBF[D]. Beijing: Beijing Institute of Technology, 2014 (in Chinese).
87 彭博, 聂蓉梅, 陈海东. 基于支持向量机的火箭气动学科代理模型构建方法[J]. 导弹与航天运载技术2013(4): 33-37.
  PENG B, NIE R M, CHEN H D. Surrogate model construction for rocket aerodynamic discipline based on support vector machine[J]. Missiles and Space Vehicles2013(4): 33-37 (in Chinese).
88 胡伟杰. 基于机器学习的导弹气动性能与流场预测研究[D]. 南京: 南京航空航天大学, 2021.
  HU W J. Research on the prediction of missile aerodynamic performance and flow field based on machine learning[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese).
89 DURU C, ALEMDAR H, BARAN O U. A deep learning approach for the transonic flow field predictions around airfoils?[J]. Computers & Fluids2022236: 105312.
90 ZHANG H. A novel deep-learning-based pressure distribution prediction approach of airfoils[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2023237(16): 3786-3799.
91 ZHANG G B, HU L W, ZHANG J, et al. A multi-task learning method combined with GAN for aerodynamic prediction[C]?∥ 2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). Piscataway: IEEE Press, 2022: 1-5.
92 张广博. 基于多任务学习的大差异性空气动力学数据建模方法研究[D]. 成都: 电子科技大学, 2023.
  ZHANG G B. Research on modeling methods for high discrepant aerodynamic data based on multi-task learning[D]. Chengdu: University of Electronic Science and Technology of China, 2023 (in Chinese).
93 张骏, 张广博, 程艳青, 等. 一种气动大差异性数据多任务学习方法[J]. 空气动力学学报202240(6): 64-72.
  ZHANG J, ZHANG G B, CHENG Y Q, et al. A multi-task learning method for large discrepant aerodynamic data[J]. Acta Aerodynamica Sinica202240(6): 64-72 (in Chinese).
94 HU L W, XIANG Y, ZHANG J, et al. Aerodynamic data predictions based on multi-task learning[J]. Applied Soft Computing2022116: 108369.
95 WANG Y Q, DENG L, WAN Y B, et al. An intelligent method for predicting the pressure coefficient curve of airfoil-based conditional generative adversarial networks[J]. IEEE Transactions on Neural Networks and Learning Systems202334(7): 3538-3552.
96 HU L W, WANG W Y, XIANG Y, et al. Flow field reconstructions with GANs based on radial basis functions[J]. IEEE Transactions on Aerospace and Electronic Systems202258(4): 3460-3476.
97 王兵. 基于生成式对抗网络的气动建模与优化方法[D]. 成都: 电子科技大学, 2021.
  WANG B. Aerodynamic modeling and optimization methods based on generative adversarial network[D]. Chengdu: University of Electronic Science and Technology of China, 2021 (in Chinese).
98 陈树生, 金世轶, 林家豪, 等. 基于混合条件生成对抗网络的飞行器气动电磁耦合优化设计方法: CN117910140B[P]. 2024-10-18.
  CHEN S S, JIN S Y, LIN J H, et al. Optimization design method for aerodynamic electromagnetic coupling of aircraft based on mixed condition generative adversarial network: CN117910140B[P]. 2024-10-18 (in Chinese).
99 SEKAR V, JIANG Q H, SHU C, et al. Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids201931(5): 057103.
100 THUEREY N, WEI?ENOW K, PRANTL L, et al. Deep learning methods for Reynolds-averaged Navier-Stokes simulations of airfoil flows[J]. AIAA Journal202058(1): 25-36.
101 曹晓峰, 李鸿岩, 郭承鹏, 等. 基于深度学习的二维翼型流场重构技术研究[J]. 航空科学技术202233(7): 106-112.
  CAO X F, LI H Y, GUO C P, et al. Research on two-dimensional airfoil flow field reconstruction based on deep learning[J]. Aeronautical Science & Technology202233(7): 106-112 (in Chinese).
102 GUO C Y, WANG Y H, HAN Y, et al. Unsteady flow-field forecasting leveraging a hybrid deep-learning architecture[J]. Physics of Fluids202436(6): 067103.
103 SABATER C, STüRMER P, BEKEMEYER P. Fast predictions of aircraft aerodynamics using deep-learning techniques[J]. AIAA Journal202260(9): 5249-5261.
104 SAETTA E, TOGNACCINI R, IACCARINO G. Uncertainty quantification in autoencoders predictions: Applications in aerodynamics[J]. Journal of Computational Physics2024506: 112951.
105 KIM J, LEE C. Deep unsupervised learning of turbulence for inflow generation at various Reynolds numbers[J]. Journal of Computational Physics2020406: 109216.
106 WU H Z, LIU X J, AN W, et al. A deep learning approach for efficiently and accurately evaluating the flow field of supercritical airfoils[J]. Computers & Fluids2020198: 104393.
107 WU H Z, LIU X J, AN W, et al. A generative deep learning framework for airfoil flow field prediction with sparse data[J]. Chinese Journal of Aeronautics202235(1): 470-484.
108 YANG Y J, LI R Z, ZHANG Y F, et al. Flowfield prediction of airfoil off-design conditions based on a modified variational autoencoder[J]. AIAA Journal202260(10): 5805-5820.
109 CHEN D L, GAO X, XU C F, et al. FlowGAN: Aconditional generative adversarial network for flow prediction in various conditions[C]?∥ 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI). Piscataway: IEEE, 2020: 315-322.
110 ABAIDI R, ADAMS N A. GAN-based generation of realistic compressible-flow samples from incomplete data[J]. Computers & Fluids2024269: 106113.
111 WANG J, HE C, LI R Z, et al. Flow field prediction of supercritical airfoils via variational autoencoder based deep learning framework[J]. Physics of Fluids202133(8): 086108.
112 TAN Z W, LI R Z, ZHANG Y F. Flow field reconstruction of 2D hypersonic inlets based on a variational autoencoder[J]. Aerospace202310(9): 825.
113 LIU G Y, LI R Z, ZHOU X Z, et al. Reconstruction and fast prediction of 3D heat and mass transfer based on a variational autoencoder[J]. International Communications in Heat and Mass Transfer2023149: 107112.
114 SOLERA-RICO A, VILA C S, GóMEZ-LóPEZ M, et al. β?-variational autoencoders and transformers for reduced-order modelling of fluid flows[J]. Nature Communications202415(1): 1361.
115 CHENG M, FANG F, PAIN C C, et al. An advanced hybrid deep adversarial autoencoder for parameterized nonlinear fluid flow modelling[J]. Computer Methods in Applied Mechanics and Engineering2020372: 113375.
116 ROZOV V, BREITSAMTER C. Data-driven prediction of unsteady pressure distributions based on deep learning[J]. Journal of Fluids and Structures2021104: 103316.
117 LEE S, YOU D. Data-driven prediction of unsteady flow over a circular cylinder using deep learning[J]. Journal of Fluid Mechanics2019879: 217-254.
118 LEE S, YOU D. Prediction of laminar vortex shedding over a cylinder using deep learning[DB/OL]. arXiv preprint: 1712.07854, 2017.
119 惠心雨, 袁泽龙, 白俊强, 等. 基于深度学习的非定常周期性流动预测方法[J]. 空气动力学学报201937(3): 462-469.
  HUI X Y, YUAN Z L, BAI J Q, et al. A method of unsteady periodic flow field prediction based on the deep learning[J]. Acta Aerodynamica Sinica201937(3): 462-469 (in Chinese).
120 高正红, 王超. 飞行器气动外形设计方法研究与进展[J]. 空气动力学学报201735(4): 516-528, 454.
  GAO Z H, WANG C. Aerodynamic shape design methods for aircraft: Status and trends[J]. Acta Aerodynamica Sinica201735(4): 516-528, 454 (in Chinese).
121 LIGHTHILL M J. A new method of two-dimensional aerodynamic design: R&M 2112[R]. London: Aeronautical Research Council, 1945.
122 TAKANASHI S. Iterative three-dimensional transonic wing design using integral equations[J]. Journal of Aircraft198522(8): 655-660.
123 DULIKRAVICH G, BAKER D. Aerodynamic shape inverse design using a Fourier series method[C]?∥ 37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999.
124 李焦赞, 高正红, 詹浩. 基于目标压力分布优化的翼型反设计方法研究[J]. 弹箭与制导学报200828(1): 187-190.
  LI J Z, GAO Z H, ZHAN H. Study on inverse design method of airfoil based on optimizati on of target pressure distribution[J]. Journal of Projectiles, Rockets, Missiles and Guidance200828(1): 187-190 (in Chinese).
125 李焦赞. 基于目标压力分布优化的翼型反设计方法研究[D]. 西安: 西北工业大学, 2007.
  LI J Z. Study on inverse design method of airfoil based on optimization of target pressure distribution[D]. Xi’an: Northwestern Polytechnical University, 2007 (in Chinese).
126 尚克明. 直升机旋翼翼型的气动设计方法研究[D]. 南京: 南京航空航天大学, 2009.
  SHANG K M. Research on aerodynamic design method for helicopter rotor airfoils[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009 (in Chinese).
127 刘浩, 徐敏, 叶茂. 基于特征正交分解的跨声速流场重构和翼型反设计方法研究[J]. 空气动力学学报201230(4): 539-545.
  LIU H, XU M, YE M. Investigations of transonic flow field reconstruction and inverse airfoil design based on proper orthogonal decomposition ROM[J]. Acta Aerodynamica Sinica201230(4): 539-545 (in Chinese).
128 白俊强, 邱亚松, 华俊. 改进型Gappy POD翼型反设计方法[J]. 航空学报201334(4): 762-771.
  BAI J Q, QIU Y S, HUA J. Improved airfoil inverse design method based on Gappy POD[J]. Acta Aeronautica et Astronautica Sinica201334(4): 762-771 (in Chinese).
129 刘俊, 宋文萍, 韩忠华, 等. Kriging模型在翼型反设计中的应用研究[J]. 空气动力学学报201432(4): 518-526.
  LIU J, SONG W P, HAN Z H, et al. Kriging-based airfoil inverse design[J]. Acta Aerodynamica Sinica201432(4): 518-526 (in Chinese).
130 何磊, 钱炜祺, 刘滔, 等. 基于深度学习的翼型反设计方法[J]. 航空动力学报202035(9): 1909-1917.
  HE L, QIAN W Q, LIU T, et al. Inverse design method of airfoil based on deep learning[J]. Journal of Aerospace Power202035(9): 1909-1917 (in Chinese).
131 CHEN W, AHMED F. PaDGAN: Learning to generate high-quality novel designs[J]. Journal of Mechanical Design2021143(3): 031703.
132 TAN X, DAIM N, CHATTORAJ J, et al. Airfoil inverse design using conditional generative adversarial networks[C]?∥ 2022 17th International Conference on Control, Automation, Robotics and Vision (ICARCV). Piscataway: IEEE Press, 2022: 143-148.
133 ACHOUR G, SUNG W J, PINON-FISCHER O J, et al. Development of a conditional generative adversarial network for airfoil shape optimization[C]?∥ AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
134 YILMAZ E, GERMAN B. Conditional generative adversarial network framework for airfoil inverse design[C]∥ AIAA Aviation 2020 Forum. Reston: AIAA, 2020.
135 YONEKURA K, WADA K, SUZUKI K. Generating various airfoil shapes with required lift coefficient using conditional variational autoencoders[DB/OL]. arXiv preprint: 2106.09901, 2021.
136 YONEKURA K, MIYAMOTO N, SUZUKI K. Inverse airfoil design method for generating varieties of smooth airfoils using conditional WGAN-gp[J]. Structural and Multidisciplinary Optimization202265(6): 173.
137 YONEKURA K, TOMORI Y, SUZUKI K. Airfoil generation and feature extraction using the conditional VAE-WGAN-gp[J]. AI20245(4): 2092-2103.
138 CHATTORAJ J, WONG J C, ZHANG Z X, et al. Tailoring generative adversarial networks for smooth airfoil design[DB/OL]. arXiv preprint: 2404.11816, 2024.
139 HEYRANI NOBARI A, CHEN W, AHMED F. PcDGAN: Acontinuous conditional diverse generative adversarial network for inverse design[C]?∥ Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 606-616.
140 ZHAO Y X, ZHANG P, SUN G P, et al. CcDPM: A continuous conditional diffusion probabilistic model for inverse design[J]. Proceedings of the AAAI Conference on Artificial Intelligence202438(15): 17033-17041.
141 吴明雨, 陈志华, 邱志明, 等. 条件生成对抗网络的翼型反设计方法[J]. 宇航学报202344(10): 1512-1521.
  WU M Y, CHEN Z H, QIU Z M, et al. An inverse design method of airfoil using conditional generative adversarial network[J]. Journal of Astronautics202344(10): 1512-1521 (in Chinese).
142 YONEKURA K, SUZUKI K. Data-driven design exploration method using conditional variational autoencoder for airfoil design[J]. Structural and Multidisciplinary Optimization202164(2): 613-624.
143 CHEN Q Y, WANG J, POPE P, et al. Inverse design of two-dimensional airfoils using conditional generative models and surrogate log-likelihoods[J]. Journal of Mechanical Design2022144(2): 021712.
144 王超杰, 何磊, 李川, 等. 基于注意力机制的翼型反设计方法[J]. 航空动力学报202540(1): 292-299.
  WANG C J, HE L, LI C, et al. Airfoil reverse design method based on self-attention mechanism[J]. Journal of Aerospace Power202540(1): 292-299 (in Chinese).
145 JIN S Y, CHEN S S, CHE S Q, et al. Airfoil aerodynamic/stealth design based on conditional generative adversarial networks[J]. Physics of Fluids202436(7): 077146.
146 SEKAR V, ZHANG M Q, SHU C, et al. Inverse design of airfoil using a deep convolutional neural network[J]. AIAA Journal201957(3): 993-1003.
147 WANG J, LI R Z, HE C, et al. An inverse design method for supercritical airfoil based on conditional generative models[J]. Chinese Journal of Aeronautics202235(3): 62-74.
148 LEI R W, BAI J Q, WANG H, et al. Deep learning based multistage method for inverse design of supercritical airfoil[J]. Aerospace Science and Technology2021119: 107101.
149 YANG S, LEE S G, YEE K. Inverse design optimization framework via a two-step deep learning approach: Application to a wind turbine airfoil[J]. Engineering with Computers202339(3): 2239-2255.
150 WANG C, WANG S Y, WANG L Y, et al. Framework of nacelle inverse design method based on improved generative adversarial networks[J]. Aerospace Science and Technology2022121: 107365.
151 陈树生, 林家豪, 翟丽君, 等. 基于生成式扩散模型的飞行器气动电磁耦合设计方法: CN118133430A[P]. 2024-06-04.
  CHEN S S, LIN J H, ZHAI L J, et al. Design method of aerodynamic electromagnetic coupling for aircraft based on generative diffusion model: CN118133430A?[P]. 2024-06-04 (in Chinese).
152 杨才东, 李承阳, 李忠博, 等. 深度学习的图像超分辨率重建技术综述[J]. 计算机科学与探索202216(9): 1990-2010.
  YANG C D, LI C Y, LI Z B, et al. Review of image super-resolution reconstruction algorithms based on deep learning[J]. Journal of Frontiers of Computer Science and Technology202216(9): 1990-2010 (in Chinese).
153 许钦. 基于深度学习的湍流超分辨率算法研究[D]. 桂林: 广西师范大学, 2023.
  XU Q. Research on turbulent super-resolution algorithm based on deep learning[D]. Guilin: Guangxi Normal University, 2023 (in Chinese).
154 聂涛. 基于最大后验概率的视频超分辨率算法研究[D]. 杭州: 浙江大学, 2014.
  NIE T. Research on video super-resolution algorithm based on maximum a posteriori[D]. Hangzhou: Zhejiang University, 2014 (in Chinese).
155 白旭, 卜丽静, 赵国忱, 等. 多特征的POCS图像超分辨率重建方法[J]. 测绘科学202247(12): 174-183.
  BAI X, BU L J, ZHAO G C, et al. POCS image super-resolution reconstruction method based on multi-feature?[J]. Science of Surveying and Mapping202247(12): 174-183 (in Chinese).
156 李展, 陈清亮, 彭青玉, 等. 基于MAP的单帧字符图像超分辨率重建[J]. 电子学报201543(1): 191-197.
  LI Z, CHEN Q L, PENG Q Y, et al. MAP-based single-frame super-resolution reconstruction for character image[J]. Acta Electronica Sinica201543(1): 191-197 (in Chinese).
157 韩阳, 朱军鹏, 郭春雨, 等. 基于扩散模型的流场超分辨率重建方法[J]. 力学学报202355(10): 2309-2320.
  HAN Y, SONG J P, GUO C Y, et al. A flow field super-resolution reconstruction method based on diffusion model[J]. Chinese Journal of Theoretical and Applied Mechanics202355(10): 2309-2320 (in Chinese).
158 BENJAMIN ERICHSON N, MATHELIN L, YAO Z W, et al. Shallow neural networks for fluid flow reconstruction with limited sensors?[J]. Proceedings Mathematical, Physical, and Engineering Sciences2020476(2238): 20200097.
159 NAIR N J, GOZA A. Leveraging reduced-order models for state estimation using deep learning[J]. Journal of Fluid Mechanics2020897: R1.
160 田野, 邓雪, 郭明明, 等. 深度学习技术在超燃冲压发动机流场分析中应用研究[J]. 防护工程202446(2): 26-35.
  TIAN Y, DENG X, GUO M M, et al. Application research of deep learning technology in flow field analysis of scramjet engines[J]. Protective Engineering202446(2): 26-35 (in Chinese).
161 陈皓, 郭明明, 田野, 等. 卷积神经网络在流场重构研究中的进展[J]. 力学学报202254(9): 2343-2360.
  CHEN H, GUO M M, TIAN Y, et al. Progress of convolution neural networks in flow field reconstruction[J]. Chinese Journal of Theoretical and Applied Mechanics202254(9): 2343-2360 (in Chinese).
162 GüEMES A, DISCETTI S, IANIRO A, et al. From coarse wall measurements to turbulent velocity fields through deep learning[J]. Physics of Fluids202133(7): 075121.
163 LEE J N, LEE S, YOU D. Deep learning approach in multi-scale prediction of turbulent mixing-layer[DB/OL]. arXiv preprint1809.07021, 2018.
164 FUKAMI K, FUKAGATA K, TAIRA K. Super-resolution analysis via machine learning: A survey for fluid flows[J]. Theoretical and Computational Fluid Dynamics202337(4): 421-444.
165 LI R, SONG B Y, CHEN Y R, et al. Deep learning reconstruction of high-Reynolds-number turbulent flow field around a cylinder based on limited sensors?[J]. Ocean Engineering2024304: 117857.
166 LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]?∥ 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 105-114.
167 DENG Z W, HE C X, LIU Y Z, et al. Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework[J]. Physics of Fluids201931(12): 125111.
168 JEON Y, YOU D. Super-resolution reconstruction of transitional boundary layers using a deep neural network[J]. International Journal of Aeronautical and Space Sciences202324(4): 1015-1031.
169 YOUSIF M Z, YU L Q, LIM H C. Super-resolution reconstruction of turbulent flow fields at various Reynolds numbers based on generative adversarial networks?[J]. Physics of Fluids202234(1): 015130.
170 XU W J, LUO W Y, WANG Y, et al. Data-driven three-dimensional super-resolution imaging of a turbulent jet flame using a generative adversarial network[J]. Applied Optics202059(19): 5729-5736.
171 XIE Y, FRANZ E, CHU M Y, et al. tempoGAN: A temporally coherent, volumetric GAN for super-resolution fluid flow[J]. ACM Transactions on Graphics201837(4): 1-15.
172 KIM H, KIM J, WON S, et al. Unsupervised deep learning for super-resolution reconstruction of turbulence[J]. Journal of Fluid Mechanics2021910: A29.
173 BODE M, GAUDING M, LIAN Z Y, et al. Using physics-informed enhanced super-resolution generative adversarial networks for subfilter modeling in turbulent reactive flows[J]. Proceedings of the Combustion Institute202138(2): 2617-2625.
174 GAUDING M, BODE M. Using physics-informed enhanced super-resolution generative adversarial networks to reconstruct mixture fraction statistics of turbulent jet flows[M]∥ High Performance Computing. Cham: Springer International Publishing, 2021: 138-153.
175 YOUSIF M Z, YU L Q, LIM H C. High-fidelity reconstruction of turbulent flow from spatially limited data using enhanced super-resolution generative adversarial network[J]. Physics of Fluids202133(12): 125119.
176 WERHAHN M, XIE Y, CHU M Y, et al. A multi-pass GAN for fluid flow super-resolution[J]. Proceedings of the ACM on Computer Graphics and Interactive Techniques20192(2): 1-21.
177 陈皓, 郭明明, 田野, 等. 超燃冲压发动机燃烧室流场超分辨率重建[J]. 推进技术202445(1): 179-189.
  CHEN H, GUO M M, TIAN Y, et al. Super resolution reconstruction of flow field in scramjet combustor[J]. Journal of Propulsion Technology202445(1): 179-189 (in Chinese).
178 QI J H, MA H B. A combined model of diffusion model and enhanced residual network for super-resolution reconstruction of turbulent flows[J]. Mathematics202412(7): 1028.
179 SHU D L, LI Z J, BARATI FARIMANI A. A physics-informed diffusion model for high-fidelity flow field reconstruction[J]. Journal of Computational Physics2023478: 111972.
180 SHAN S M, WANG P K, CHEN S, et al. PiRD: Physics-informed residual diffusion for flow field reconstruction[DB/OL]. arXiv preprint: 2404.08412, 2024.
181 BAO K R, ZHANG X Y, PENG W, et al. Deep learning method for super-resolution reconstruction of the spatio-temporal flow field[J]. Advances in Aerodynamics20235(1): 19.
182 YANG F Z, YANG H, FU J L, et al. Learning texture transformer network for image super-resolution[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 5790-5799.
183 LI X, YANG Z, YANG H. Hybrid-attention-based Swin-Transformer super-resolution reconstruction for tomographic particle image velocimetry[J]. Physics of Fluids202436(6): 065132.
184 ZENG K, ZHANG Y, XU H, et al. Super-resolution reconstruction of turbulent flows with a hybrid framework of attention[J]. Physics of Fluids202436(6): 065107.
185 刘杨. 基于深度学习的流场原位可视化关键技术研究[D]. 长沙: 国防科技大学, 2020.
  LIU Y. Research on flow in situ visualization based on deep learning[D]. Changsha: National University of Defense Technology, 2020 (in Chinese).
186 LIU Y, WANG Y Q, DENG L, et al. A novel in situ compression method for CFD data based on generative adversarial network[J]. Journal of Visualization201922(1): 95-108.
187 BUZZICOTTI M, BONACCORSO F, DI LEONI P C, et al. Reconstruction of turbulent data with deep generative models for semantic inpainting from TURB-Rot database[J]. Physical Review Fluids20216(5): 050503.
188 POST J. The next generation air transportation system of the United States: Vision, accomplishments, and future directions[J]. Engineering20217(4): 427-430.
189 BOLI? T, RAVENHILL P. SESAR: The past, present, and future of European air traffic management research[J]. Engineering20217(4): 448-451.
190 郭正玉, 刘浩宇, 苏雨. 空战目标轨迹预测技术研究综述[J]. 航空兵器202431(2): 32-43.
  GUO Z Y, LIU H Y, SU Y. Review of research on airborne target trajectory prediction technology?[J]. Aero Weaponry202431(2): 32-43 (in Chinese).
191 乔少杰, 韩楠, 朱新文, 等. 基于卡尔曼滤波的动态轨迹预测算法[J]. 电子学报201846(2): 418-423.
  QIAO S J, HAN N, ZHU X W, et al. A dynamic trajectory prediction algorithm based on Kalman filter[J]. Acta Electronica Sinica201846(2): 418-423 (in Chinese).
192 郑天宇, 姚郁, 贺风华. 基于可学习EKF的高超声速飞行器航迹估计[J]. 哈尔滨工业大学学报202052(6): 160-170.
  ZHENG T Y, YAO Y, HE F H. Trajectory estimation of a hypersonic flight vehicle via L-EKF[J]. Journal of Harbin Institute of Technology202052(6): 160-170 (in Chinese).
193 MATHEW W, RAPOSO R, MARTINS B. Predicting future locations with hidden Markov models[C]?∥ Proceedings of the 2012 ACM Conference on Ubiquitous Computing. New York: ACM, 2012: 911-918.
194 翟岱亮, 雷虎民, 李炯, 等. 基于自适应IMM的高超声速飞行器轨迹预测[J]. 航空学报201637(11): 3466-3475.
  ZHAI D L, LEI H M, LI J, et al. Trajectory prediction of hypersonic vehicle based on adaptive IMM[J]. Acta Aeronautica et Astronautica Sinica201637(11): 3466-3475 (in Chinese).
195 TASTAMBEKOV K, PUECHMOREL S, DELAHAYE D, et al. Aircraft trajectory forecasting using local functional regression in Sobolev space[J]. Transportation Research Part C: Emerging Technologies201439: 1-22.
196 奚之飞, 徐安, 寇英信, 等. 基于改进粒子群算法辨识Volterra级数的目标机动轨迹预测[J]. 航空学报202041(12): 324183.
  XI Z F, XU A, KOU Y X, et al. Target maneuver trajectory prediction based on Volterra series identified by improved particle swarm algorithm[J]. Acta Aeronautica et Astronautica Sinica202041(12): 324183 (in Chinese).
197 张宏鹏, 黄长强, 唐上钦,等. 基于卷积神经网络的无人作战飞机飞行轨迹实时预测[J]. 兵工学报202041(9): 1894-1903.
  ZHANG H P, HUANG C Q, TANG S Q, et al. CNN-based real-time prediction method of flight trajectory of unmanned combat aerial vehicle[J]. Acta Armamentarii202041(9): 1894-1903 (in Chinese).
198 ZENG W L, QUAN Z B, ZHAO Z Y, et al. A deep learning approach for aircraft trajectory prediction in terminal airspace?[J]. IEEE Access20208: 151250-151266.
199 石庆研, 岳聚财, 韩萍, 等. 基于LSTM-ARIMA模型的短期航班飞行轨迹预测[J]. 信号处理201935(12): 2000-2009.
  SHI Q Y, YUE J C, HAN P, et al. Short-term flight trajectory prediction based on LSTM-ARIMA model[J]. Journal of Signal Processing201935(12): 2000-2009 (in Chinese).
200 崔亚奇, 熊伟, 何友. 不确定航迹自适应预测模型[J]. 航空学报201940(5): 322557.
  CUI Y Q, XIONG W, HE Y. Adaptive forecast model for uncertain track[J]. Acta Aeronautica et Astronautica Sinica201940(5): 322557 (in Chinese).
201 LIU Y H, WANG H L, FAN J X, et al. Control-oriented UAV highly feasible trajectory planning: A deep learning method[J]. Aerospace Science and Technology2021110: 106435.
202 MA L, TIAN S. A hybrid CNN-LSTM model for aircraft 4D trajectory prediction[J]. IEEE Access20208: 134668-134680.
203 ZHONG G, ZHANG H H, ZHOU J Y, et al. Short-term 4D trajectory prediction for UAV based on spatio-temporal trajectory clustering[J]. IEEE Access202210: 93362-93380.
204 孔建国, 李亚彬, 张时雨, 等. 基于CNN-LSTM-attention模型航迹预测研究[J]. 航空计算技术202353(1): 1-5.
  KONG J G, LI Y B, ZHANG S Y, et al. Research on track prediction based on CNN-LSTM-attention model[J]. Aeronautical Computing Technique202353(1): 1-5 (in Chinese).
205 王堃, 周志崇,曲凯, 等. 基于注意力机制的CNN-LSTM模型的航迹预测[J]. 空军工程大学学报202324(6): 50-57.
  WANG K, ZHOU Z C, QU K, et al. Real-time track prediction of CNN-LSTM model based on attention mechanism[J]. Journal of Air Force Engineering University202324(6): 50-57 (in Chinese).
206 李战武, 张帅, 乔英峰, 等. 基于自注意力机制和CNN-LSTM的空战目标机动轨迹预测[J]. 兵器装备工程学报202344(7): 209-216.
  LI Z W, ZHANG S, QIAO Y F, et al. Maneuvering trajectory prediction of air combat targets based on self-attention mechanism and CNN-LSTM[J]. Journal of Ordnance Equipment Engineering202344(7): 209-216 (in Chinese).
207 方伟, 汤淼, 闫文君, 等. 基于残差神经网络和LSTM的飞行轨迹预测[J]. 舰船电子工程202343(10): 42-46.
  FANG W, TANG M, YAN W J, et al. Flight trajectory prediction based on residual neural network and LSTM[J]. Ship Electronic Engineering202343(10): 42-46 (in Chinese).
208 王硕, 吴楠, 黄洁, 等.基于残差修正CNN-BiLSTM的空中目标航迹短期预测算法[J]. 指挥控制与仿真202446(1): 55-63.
  WANG S, WU N, HUANG J, et al. Short-term prediction algorithm of air target track based on residual correction CNN-BiLSTM[J]. Command Control & Simulation202446(1): 55-63 (in Chinese).
209 张飞桥, 张亦驰, 严皓. 基于改进卷积网络的终端区4D航迹预测与冲突检测[J]. 科学技术与工程202424(5): 2150-2157.
  ZHANG F Q, ZHANG Y C, YAN H. Improved convolutional network based 4D trajectory prediction and conflict detection in terminal areas[J]. Science Technology and Engineering202424(5): 2150-2157 (in Chinese).
210 WU X P, YANG H Y, CHEN H, et al. Long-term 4D trajectory prediction using generative adversarial networks[J]. Transportation Research Part C: Emerging Technologies2022136: 103554.
211 XIANG J, XIE J F, CHEN J. Landing trajectory prediction for UAS based on generative adversarial network[C]?∥ AIAA Scitech 2023 Forum. Reston: AIAA, 2023.
212 陈玉立, 佟强, 谌彤童, 等. 基于注意力机制和生成对抗网络的飞行器短期航迹预测模型[J]. 计算机应用202242(10): 3292-3299.
  CHEN Y L, TONG Q, CHEN T T, et al. Short-term trajectory prediction model of aircraft based on attention mechanism and generative adversarial network[J]. Journal of Computer Applications202242(10): 3292-3299 (in Chinese).
213 ZHANG H Y, LIU Z Z. Four-dimensional aircraft trajectory prediction based on generative deep learning[J]. Journal of Aerospace Information Systems202421(7): 554-567.
214 TONG Q, HU J Q, CHEN Y L, et al. Long-term trajectory prediction model based on transformer[J]. IEEE Access202311: 143695-143703.
215 DONG X C, TIAN Y, NIU K X, et al. Research on flight trajectory prediction method based on transformer[C]?∥ International Conference on Smart Transportation and City Engineering (STCE 2023).New York: SPIE, 2024.
216 VOS R W, SUN J, HOEKSTRA J M. A transformer-based trajectory prediction model to support air traffic demand forecasting[C]?∥ International Conference on Research in Air Transportation. 2024: ICRAT 2024-87.
217 ZHANG W X, PAYAN A, MAVRIS D. Aircraft trajectory prediction in terminal airspace through deep learning approaches?[C]?∥ AIAA Aviation Forum and Ascend 2024. Reston: AIAA, 2024.
218 狄子琦, 王翔宇, 吴双, 等. 基于Transformer架构的高超声速飞行器轨迹生成与预测算法[J]. 空天防御20236(4): 35-41.
  DI Z Q, WANG X Y, WU S, et al. An algorithm for trajectory generation and prediction of hypersonic vehicle based on Transformer architecture?[J]. Air & Space Defense20236(4): 35-41 (in Chinese).
219 SILVESTRE J, MIELGO P, BREGON A, et al. Multi-route aircraft trajectory prediction using temporal fusion transformers[J]. IEEE Access202412: 174094-174106.
220 LUO A F, LUO Y X, LIU H, et al. An improved transformer‐based model for long‐term 4D trajectory prediction in civil aviation[J]. IET Intelligent Transport Systems202418(9): 1588-1598.
221 HASHEMI S M, HASHEMI S ALI, BOTEZ R M, et al. Aircraft trajectory prediction enhanced through resilient generative adversarial networks secured by blockchain: Application to UAS-S4 ehécatl[J]. Applied Sciences202313(17): 9503.
222 LIU Y L, HANSEN M. Predicting aircraft trajectories: A deep generative convolutional recurrent neural networks approach[DB/OL]. arXiv preprint1812.11670, 2018.
223 PANG Y T, LIU Y M. Conditional Generative Adversarial Networks (CGAN) for aircraft trajectory prediction considering weather effects[C]∥ AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
224 YEH S T, DU X S. Optimal tilt-wing eVTOL takeoff trajectory prediction using regression generative adversarial networks[J]. Mathematics202412(1): 26.
225 YEH S T, DU X S. Transfer-learning-enhanced regression generative adversarial networks for optimal eVTOL takeoff trajectory prediction[J]. Electronics202413(10): 1911.
226 WANG Y H, CHEN Y Y, YU R, et al. Cooperative trajectory prediction of UAVs via generative adversarial networks[C]∥ IECON 2023-49th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE Press, 2023: 1-6.
227 张百川, 毕文豪, 张安, 等. 基于Transformer模型的空战飞行器轨迹预测误差补偿方法[J]. 航空学报202344(9): 327413.
  ZHANG B C, BI W H, ZHANG A, et al. Transformer-based error compensation method for air combat aircraft trajectory prediction[J]. Acta Aeronautica et Astronautica Sinica202344(9): 327413 (in Chinese).
228 石争浩, 仵晨伟, 李成建, 等. 航空遥感图像深度学习目标检测技术研究进展[J]. 中国图象图形学报202328(9): 2616-2643.
  SHI Z H, WU C W, LI C J, et al. Object detection techniques based on deep learning for aerial remote sensing images: A survey[J]. Journal of Image and Graphics202328(9): 2616-2643 (in Chinese).
229 耿创,宋品德, 曹立佳. YOLO算法在目标检测中的研究进展[J]. 兵器装备工程学报202243(9): 162-173.
  GENG C, SONG P D, CAO L J. Research progress of YOLO algorithm in target detection[J]. Journal of Ordnance Equipment Engineering202243(9): 162-173 (in Chinese).
230 裴伟, 许晏铭, 朱永英, 等. 改进的SSD航拍目标检测方法[J]. 软件学报201930(3): 738-758.
  PEI W, XU Y M, ZHU Y Y, et al. The target detection method of aerial photography images with improved SSD[J]. Journal of Software201930(3): 738-758 (in Chinese).
231 BOUDJIT K, RAMZAN N. Human detection based on deep learning YOLO-v2 for real-time UAV applications[J]. Journal of Experimental & Theoretical Artificial Intelligence202234(3): 527-544.
232 SHASHANK A, SAJITHVARIYAR V V, SOWMYA V, et al. Identifying epiphytes in drones photos with a conditional generative adversarial network (C-GAN)[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences202044: 99-104.
233 CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[M]∥ Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 213-229.
234 LEBEDEV M A, VIZILTER Y V, VYGOLOV O V, et al. Change detection in remote sensing images using conditional adversarial networks[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences2018422: 565-571.
235 NIU X D, GONG M G, ZHAN T, et al. A conditional adversarial network for change detection in heterogeneous images[J]. IEEE Geoscience and Remote Sensing Letters201916(1): 45-49.
236 ZHANG Y H, SUN H, ZUO J W, et al. Aircraft type recognition in remote sensing images based on feature learning with conditional generative adversarial networks[J]. Remote Sensing201810(7): 1123.
237 LI R, PENG Y, YANG Q Q. Fusion enhancement: UAV target detection based on multi-modal GAN[C]∥2023 IEEE 7th Information Technology and Mechatronics Engineering Conference (ITOEC). Piscataway: IEEE Press, 2023: 1953-1957.
238 REN K, GAO Y, WAN M J, et al. Infrared small target detection via region super resolution generative adversarial network[J]. Applied Intelligence202252(10): 11725-11737.
239 SALAUDEEN H, ?ELEBI E. Pothole detection using image enhancement GAN and object detection network[J]. Electronics202211(12): 1882.
240 RABBI J, RAY N, SCHUBERT M, et al. Small-object detection in remote sensing images with end-to-end edge-enhanced GAN and object detector network[J]. Remote Sensing202012(9): 1432.
241 WANG J Y, LI Y N, CHEN W X. UAV aerial image generation of crucial components of high-voltage transmission lines based on multi-level generative adversarial network[J]. Remote Sensing202315(5): 1412.
242 LI J N, LIANG X D, WEI Y C, et al. Perceptual generative adversarial networks for small object detec-tion[C]∥ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 1222-1230.
243 Y???T S. Improving object detection of UAV images with real-ESRGAN[J]. Recent Advances in Science and Engineering20233(2): 33-39.
244 XI Y, JIA W J, ZHENG J B, et al. DRL-GAN: Dual-stream representation learning GAN for low-resolution image classification in UAV applications[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing202014: 1705-1716.
245 LI X, DUAN H B, TIAN Y L, et al. Exploring image generation for UAV change detection?[J]. IEEE/CAA Journal of Automatica Sinica20229(6): 1061-1072.
246 BRAIS B, DANIELC, LORENZOS, et al. A full data augmentation pipeline for small object detection based on generative adversarial networks[J]. Pattern Recognition2023133: 108998.
247 雷毅飞, 王露禾, 贺泊茗,等. 基于深度强化学习的多无人机空战机动策略研究[J]. 航空科学技术202435(3): 111-118.
  LEI Y F, WANG L H, HE B M, et al. Research on multi-UAV air combat maneuver strategy based on deep reinforcement learning[J]. Aeronautical Science & Technology202435(3): 111-118 (in Chinese).
248 杨志鹏, 林松, 曾长, 等. 基于深度强化学习的多飞行器自适应协同航路规划[J]. 战术导弹技术2024(2): 106-116.
  YANG Z P, LIN S, ZENG C, et al. Multi-aircraft adaptive cooperative route planning based on deep reinforcement learning[J]. Tactical Missile Technology2024(2): 106-116 (in Chinese).
249 丁溶, 曹承钰, 李繁飙, 等. 基于深度强化学习的变外形飞行器姿态控制[J]. 航天控制202442(2): 55-61.
  DING R, CAO C Y, LI F B, et al. Attitude control of morphing vehicle based on deep reinforcement learning[J]. Aerospace Control202442(2): 55-61 (in Chinese).
250 白成超, 张琦, 谢旭东, 等. 面向复杂决策的OODA环: 智能赋能与认知增强[J]. 指挥与控制学报202410(3): 284-297.
  BAI C C, ZHANG Q, XIE X D, et al. OODA ring theory for complex decision-making: Intelligent empowerment and cognitive enhancement[J]. Journal of Command and Control202410(3): 284-297 (in Chinese).
文章导航

/