飞行器设计生成式模型专栏

基于目标检验条件生成对抗网络的翼型反设计方法

  • 孟宪超 ,
  • 陶俊
展开
  • 复旦大学 航空航天系,上海 200433
.E-mail: juntao@fudan.edu.cn

收稿日期: 2024-09-10

  修回日期: 2024-10-08

  录用日期: 2024-11-04

  网络出版日期: 2024-11-18

An airfoil inverse design method based on target testing conditional generative adversarial network

  • Xianchao MENG ,
  • Jun TAO
Expand
  • Department of Aeronautics and Astronautics,Fudan University,Shanghai 200433,China

Received date: 2024-09-10

  Revised date: 2024-10-08

  Accepted date: 2024-11-04

  Online published: 2024-11-18

摘要

基于条件生成对抗网络(CGAN),通过在CGAN后附加多层感知机(MLP)检验器,发展了一种目标检验条件生成对抗网络(TT-CGAN)并将其用于翼型反设计。TT-CGAN可以重点检验设计目标的实现效果,增强了CGAN对于附加条件的检验效果。基于UIUC翼型数据库,选取了797个真实翼型,并通过求解基于雷诺平均Navier-Stokes(RANS)方程组计算得到了各翼型对应的气动参数,形成真实翼型数据库;利用类别/形状函数变换(CST)方法对翼型外形进行参数化,将翼型外形从100维几何参数描述为14维CST参数。通过特征级融合方式将升力系数、阻力系数、表面压力分布融合得到多模态气动参数,并与基于升阻力系数的气动参数作对比,分别作为网络的附件条件,进行翼型反设计。结果表明,基于多模态数据TT-CGAN的翼型反设计方法生成结果更为精准,翼型几何外形的平均均方根误差为1.779×10-3,平均绝对误差为1.351×10-3。通过求解RANS方程组对生成翼型进行数值模拟验证,结果显示其升力系数的平均相对误差为3.599 8%,阻力系数的平均相对误差为3.723 9%,生成翼型的升阻力系数均满足设计指标,生成结果较精准。通过比较训练样本与测试样本的升阻比分布,发现升阻比在[20,30)区间上的翼型占总测试集的40%,而升阻比在此区间的训练翼型仅占训练集的16%,即使在训练样本较少的区间,该方法也能实现准确的预测,具有一定泛化性。

本文引用格式

孟宪超 , 陶俊 . 基于目标检验条件生成对抗网络的翼型反设计方法[J]. 航空学报, 2025 , 46(10) : 631182 -631182 . DOI: 10.7527/S1000-6893.2024.31182

Abstract

A Target Testing Conditional Generative Adversarial Network (TT-CGAN) is developed and applied to airfoil inverse design. This network extends the Conditional Generative Adversarial Network (CGAN) by integrating a Multi-Layer Perceptron (MLP) tester, so as to enhance the capability of CGAN in evaluating the impact of additional conditions on target testing. Utilizing the UIUC airfoil database, 797 real airfoils were selected, and their corresponding aerodynamic parameters were calculated by solving the Reynolds-Averaged Navier-Stokes (RANS) equations to construct a comprehensive airfoil database. The airfoil shapes were parameterized using the Class Shape Transformation (CST) method, transforming the geometric parameters from 100 to 14 CST parameters. Multi-modal aerodynamic parameters, including lift coefficient, drag coefficient, and surface pressure distribution, were fused using the feature-level fusion approach. These parameters were compared with the aerodynamic parameters based solely on lift and drag coefficients, which served as auxiliary conditions for the network during the airfoil inverse design process. The results indicate that the TT-CGAN based inverse design method generates more accurate airfoils, with an average root mean square error of 1.779×10-3 and an average mean absolute error of 1.351×10-3 in airfoil geometry. The generated airfoils were further validated through numerical simulations by solving the RANS equations, demonstrating an average relative error of 3.599 8% for the lift coefficient and 3.723 9% for the drag coefficient, confirming that the generated airfoils can meet the specified design criteria. Analysis of the lift-to-drag ratio distributions reveals that 40% of the test airfoils achieved lift-to-drag ratios within the [20, 30) range, compared to only 16% in the training set. This finding highlights the method’s capability to make accurate predictions even within data-sparse regions, showcasing its generalizability.

参考文献

1 卜月鹏, 宋文萍, 韩忠华, 等. 基于CST参数化方法的翼型气动优化设计[J]. 西北工业大学学报201331(5): 829-836.
  BU Y P, SONG W P, HAN Z H, et al. Aerodynamic optimization design of airfoil based on CST parameterization method[J]. Journal of Northwestern Polytechnical University201331(5): 829-836 (in Chinese).
2 王清, 招启军. 基于遗传算法的旋翼翼型综合气动优化设计[J]. 航空动力学报201631(6): 1486-1495.
  WANG Q, ZHAO Q J. Synthetical optimization design of rotor airfoil by genetic algorithm[J]. Journal of Aerospace Power201631(6): 1486-1495 (in Chinese).
3 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报202041(5): 623344.
  HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica202041(5): 623344 (in Chinese).
4 白俊强, 雷锐午, 杨体浩, 等. 基于伴随理论的大型客机气动优化设计研究进展[J]. 航空学报201940(1): 522642.
  BAI J Q, LEI R W, YANG T H, et al. Progress of adjoint-based aerodynamic optimization design for large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica201940(1): 522642 (in Chinese).
5 夏露, 常彦鑫, 张龙. 改进的模拟退火算法在翼型设计中的应用[J]. 飞行力学200826(1): 71-74.
  XIA L, CHANG Y X, ZHANG L. The application of an improved simulated annealing algorithm to airfoil design[J]. Flight Dynamics200826(1): 71-74 (in Chinese).
6 许瑞飞, 邓一菊, 钱瑞战. 气动优化设计及其对CFD的需求[J]. 航空科学技术201122(2): 50-52.
  XU R F, DENG Y J, QIAN R Z. Aerodynamic optimzation design and its requirement to CFD[J]. Aeronautical Science & Technology201122(2): 50-52 (in Chinese).
7 穆雪峰. 多学科设计优化代理模型技术的研究和应用[D]. 南京: 南京航空航天大学, 2004.
  MU X F. Research and application of multidisciplinary design optimization agent model technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2004 (in Chinese).
8 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报201637(11): 3197-3225.
  HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica201637(11): 3197-3225 (in Chinese).
9 郭丽丽, 丁世飞. 深度学习研究进展[J]. 计算机科学201542(5): 28-33.
  GUO L L, DING S F. Research progress on deep learning[J]. Computer Science201542(5): 28-33 (in Chinese).
10 廖鹏, 姚磊江, 白国栋, 等. 基于深度学习的混合翼型前缘压力分布预测[J]. 航空动力学报201934(8): 1751-1758.
  LIAO P, YAO L J, BAI G D, et al. Prediction of hybrid airfoil leading edge pressure distribution based on deep learning[J]. Journal of Aerospace Power201934(8): 1751-1758 (in Chinese).
11 陈海, 钱炜祺, 何磊. 基于深度学习的翼型气动系数预测[J]. 空气动力学学报201836(2): 294-299.
  CHEN H, QIAN W Q, HE L. Aerodynamic coefficient prediction of airfoils based on deep learning[J]. Acta Aerodynamica Sinica201836(2): 294-299 (in Chinese).
12 TAO J, SUN G. An artificial neural network approach for aerodynamic performance retention in airframe noise reduction design of a 3D swept wing model[J]. Chinese Journal of Aeronautics201629(5): 1213-1225.
13 王超杰, 何磊, 李川, 等. 基于注意力机制的翼型反设计方法[J]. 航空动力学报202540(1): 20230106.
  WANG C J, HE L, LI C, et al. Airfoil reverse design method based on self-attention mechanism[J]. Journal of Aerospace Power202540(1): 20230106 (in Chinese).
14 赵国庆, 招启军. 基于目标压力分布的旋翼先进气动外形反设计分析方法[J]. 航空学报201435(3): 744-755.
  ZHAO G Q, ZHAO Q J. Inverse design analysis method on rotor with advanced aerodynamic configuration based upon target pressure distribution[J]. Acta Aeronautica et Astronautica Sinica201435(3): 744-755 (in Chinese).
15 LIGHTHILL M J. A new method of two-dimensional aerodynamic design[R]. London: Aeronautical Research Council, 1945.
16 STEGER J L, KLINEBERG J M. A finite-difference method for transonic airfoil design[J]. AIAA Journal197311(5): 628-635.
17 CARLSON L A. Transonic airfoil analysis and design using Cartesian coordinates[J]. Journal of Aircraft197613(5): 349-356.
18 SOBIECZKY H, YU N J, FUNG K Y, et al. New method for designing shock-free transonic configurations[J]. AIAA Journal197917(7): 722-729.
19 TAKANASHI S. Iterative three-dimensional transonic wing design using integral equations[J]. Journal of Aircraft198522(8): 655-660.
20 HENNE P A. Inverse transonic wing design method[J]. Journal of Aircraft198118(2): 121-127.
21 CAMPBELL R, SMITH L. A hybrid algorithm for transonic airfoil and wing design[C]∥5th Applied Aerodynamics Conference. Reston: AIAA, 1987.
22 华俊, 张仲寅, 乔志德, 等. 一种跨声速翼型设计方法及设计诸例[J]. 空气动力学学报19908(2): 117-123.
  HUA J, ZHANG Z Y, QIAO Z D, et al. A transonic airfoil design method and examples[J]. Acta Aerodynamica Sinica19908(2): 117-123 (in Chinese).
23 白俊强, 华俊, 张仲寅. 基于欧拉方程的跨声速翼型设计[J]. 空气动力学学报199715(4): 458-449, 460-461.
  BAI J Q, HUA J, ZHANG Z Y. Transonic airfoil design using Euler equations[J]. Acta Aerodynamica Sinica199715(4): 458-449, 460-461 (in Chinese).
24 詹浩, 华俊, 张仲寅. 基于余量修正原理的多翼面气动力反设计方法[J]. 航空学报200324(5): 411-413.
  ZHAN H, HUA J, ZHANG Z Y. Design of multi-lifting surfaces based on iterative residual correction[J]. Acta Aeronautica et Astronautica Sinica200324(5): 411-413 (in Chinese).
25 BUI-THANH T, DAMODARAN M, WILLCOX K. Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition[J]. AIAA Journal200442(8): 1505-1516.
26 白俊强, 邱亚松, 华俊. 改进型Gappy POD翼型反设计方法[J]. 航空学报201334(4): 762-771.
  BAI J Q, QIU Y S, HUA J. Improved airfoil inverse design method based on gappy POD[J]. Acta Aeronautica et Astronautica Sinica201334(4): 762-771 (in Chinese).
27 宋超, 刘红阳, 周铸, 等. 基于生成拓扑映射的气动外形反设计方法研究[J]. 西北工业大学学报202240(4): 837-844.
  SONG C, LIU H Y, ZHOU Z, et al. Inverse design of aerodynamic configuration using generative topographic mapping[J]. Journal of Northwestern Polytechnical University202240(4): 837-844 (in Chinese).
28 吴秋雨. 基于生成式对抗网络的气动外形优化方法研究[D]. 成都: 电子科技大学, 2021.
  WU Q Y. Research on aerodynamic shape optimization method based on generative countermeasure network[D]. Chengdu: University of Electronic Science and Technology of China, 2021 (in Chinese).
29 SEKAR V, ZHANG M Q, SHU C, et al. Inverse design of airfoil using a deep convolutional neural network[J]. AIAA Journal201957(3): 993-1003.
30 何磊, 钱炜祺, 刘滔, 等. 基于深度学习的翼型反设计方法[J]. 航空动力学报202035(9): 1909-1917.
  HE L, QIAN W Q, LIU T, et al. Inverse design method of airfoil based on deep learning[J]. Journal of Aerospace Power202035(9): 1909-1917 (in Chinese).
31 陈鹏, 李擎, 张德政, 等. 多模态学习方法综述[J]. 工程科学学报202042(5): 557-569.
  CHEN P, LI Q, ZHANG D Z, et al. A survey of multimodal machine learning[J]. Chinese Journal of Engineering202042(5): 557-569 (in Chinese).
32 黄礼铿, 高正红, 张德虎. 基于变可信度代理模型的气动优化[J]. 空气动力学学报201331(6): 783-788.
  HUANG L K, GAO Z H, ZHANG D H. Aerodynamic optimization based on multi-fidelity surrogate[J]. Acta Aerodynamica Sinica201331(6): 783-788 (in Chinese).
33 刘璟, 边枭, 徐冠峰, 等. 基于多可信度代理模型的尾喷管优化设计[J]. 航空工程进展202213(6): 29-39.
  LIU J, BIAN X, XU G F, et al. Optimal design of nozzle based on multi-fidelity surrogate model[J]. Advances in Aeronautical Science and Engineering202213(6): 29-39 (in Chinese).
34 张立, 陈江涛, 熊芬芬, 等. 基于元学习的多可信度深度神经网络代理模型[J]. 机械工程学报202258(1): 190-200.
  ZHANG L, CHEN J T, XIONG F F, et al. Meta-learning based multi-fidelity deep neural networks metamodel method[J]. Journal of Mechanical Engineering202258(1): 190-200 (in Chinese).
35 屈经国, 王强, 彭博, 等. 基于多模态融合的任意对称翼型结冰预测方法[J]. 航空动力学报202439(1): 54-61.
  QU J G, WANG Q, PENG B, et al. Icing prediction method for arbitrary symmetric airfoil using multimodal fusion[J]. Journal of Aerospace Power202439(1): 54-61 (in Chinese).
36 GAO J, LI P, CHEN Z K, et al. A survey on deep learning for multimodal data fusion[J]. Neural Computation202032(5): 829-864.
37 田洁华, 孙迪, 屈峰, 等. 基于CST-GAN的翼型参数化方法[J]. 航空学报202344(18): 128280.
  TIAN J H, SUN D, QU F, et al. Airfoil parameterization method based on CST-GAN[J]. Acta Aeronautica et Astronautica Sinica202344(18): 128280 (in Chinese).
38 JIN S Y, CHEN S S, CHE S Q, et al. Airfoil aerodynamic/stealth design based on conditional generative adversarial networks[J]. 202436(7): 077146.
39 WANG Y Q, DENG L, WAN Y B, et al. An intelligent method for predicting the pressure coefficient curve of airfoil-based conditional generative adversarial networks[J]. IEEE Transactions on Neural Networks and Learning Systems202334(7): 3538-3552.
40 REYNOLDS O. On the dynamical theory of incompressible viscous fluids and the determination of the criterion[J]. Philosophical Transactions of the Royal Society of London (A)1895186: 123-164.
41 WILCOX D C. Turbulence modeling for CFD[J]. Anaheim: DCW Industries1998.
42 SAGAUT P. Large eddy simulation for incompressible flows: An introduction[M]. 3rd ed. Berlin, New York: Springer-Verlag, 2006
43 阎超, 禹建军, 李君哲. 热流CFD计算中格式和网格效应若干问题研究[J]. 空气动力学学报200624(1): 125-130.
  YAN C, YU J J, LI J Z. Scheme effect and grid dependency in CFD computations of heat transfer[J]. Acta Aerodynamica Sinica200624(1): 125-130 (in Chinese).
44 JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics1996126(1): 202-228.
45 JAMESON A, YOON S. Lower-upper implicit schemes with multiple grids for the Euler equations[J]. AIAA Journal198725(7): 929-935.
46 WRIGHT M J, CANDLER G V, PRAMPOLINI M. Data-parallel lower-upper relaxation method for the Navier-Stokes equations[J]. AIAA Journal199634(7): 1371-1377.
47 SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992.
48 KULFAN B M, BUSSOLETTI J E. “Fundamental” parameteric geometry representations for aircraft component shapes[C]∥11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2006.
49 KULFAN B M. Recent extensions and applications of the ‘CST’ universal parametric geometry representation method[J]. The Aeronautical Journal2010114(1153): 157-176.
50 KULFAN B M. A universal parametric geometry representation method-“CST”[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
51 徐亚峰, 刘学军, 吕宏强. 基于CST参数化方法的翼型快速设计[J]. 航空计算技术201141(5): 24-29, 33.
  XU Y F, LIU X J, LV H Q. Fast airfoil design based on CST parameterization[J]. Aeronautical Computing Technique201141(5): 24-29, 33 (in Chinese).
52 关晓辉, 李占科, 宋笔锋. CST气动外形参数化方法研究[J]. 航空学报201233(4): 625-633.
  GUAN X H, LI Z K, SONG B F. A study on CST aerodynamic shape parameterization method[J]. Acta Aeronautica et Astronautica Sinica201233(4): 625-633 (in Chinese).
53 MIRZA M, OSINDERO S. Conditional generative adversarial nets[DB/OL]. arXiv preprint:1411.1784, 2014.
54 张虎成, 李雷孝, 刘东江. 多模态数据融合研究综述[J]. 计算机科学与探索202418(10): 2501-2520.
  ZHANG H C, LI L X, LIU D J. Survey of multimodal data fusion research[J]. Journal of Frontiers of Computer Science and Technology202418(10): 2501-2520 (in Chinese).
文章导航

/