电子电气工程与控制

多跑道混合运行模式进场航班动态鲁棒调度

  • 张军峰 ,
  • 马曌 ,
  • 杜卓铭 ,
  • 胡荣
展开
  • 1.南京航空航天大学 民航学院,南京 210016
    2.北京航空航天大学 电子信息工程学院,北京 100191
    3.空地一体新航行系统技术全国重点实验室,北京 100191

收稿日期: 2024-07-18

  修回日期: 2024-09-05

  录用日期: 2024-11-07

  网络出版日期: 2024-11-14

基金资助

国家自然科学基金(52372315);南京航空航天大学研究生科研与实践创新计划项目(xcxjh20230734)

Dynamic robust scheduling of aircraft arrival in multi-runway mixed operation mode

  • Junfeng ZHANG ,
  • Zhao MA ,
  • Zhuoming DU ,
  • Rong HU
Expand
  • 1.College of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.School of Electronic and Information Engineering,Beihang University,Beijing 100191,China
    3.State Key Laboratory of CNS/ATM,Beijing 100191,China

Received date: 2024-07-18

  Revised date: 2024-09-05

  Accepted date: 2024-11-07

  Online published: 2024-11-14

Supported by

National Natural Science Foundation of China(52372315);Postgraduate Research & Practice Innovation Program of NUAA(xcxjh20230734)

摘要

为应对终端区不确定因素对航班实际到达时间的影响,提出了基于机会约束的进场航班随机规划调度方法,旨在实现调度方案的鲁棒性。首先,基于历史飞行数据,梳理刻画航班从进港点到起始进近定位点(IAF)的到达时间不确定性分布。其次,考虑不确定性分布,引入机会约束以限制违背间隔约束的概率,建立2阶段随机规划模型。其中,第1阶段针对进场管制,在IAF前完成对航班的预排序和调度,最小化序列长度和飞行时间;第2阶段针对进近管制,建立安全间隔,最小化延误降落跑道。接着,为满足进场运行实时性需求,引入针对随机规划的滚动时域控制(RHC)算法,利用样本平均近似(SAA)算法重构随机规划模型。最后,采用广州白云机场实际运行数据实施验证。验证结果表明,基于随机规划问题提出的RHC算法,不但可以保证解的质量,而且大幅提升了模型求解效率。此外,进场调度方案的鲁棒性提升显著,“一落一起”与“两落一起”2种运行模式下,针对着陆延误指标,采用先到先服务(FCFS)策略的结果分别是所提方法的6.1倍、9.6倍;针对航班违反间隔比例指标,采用FCFS策略的结果是20%和18.9%,而所提方法均为3.5%;针对序列交换次数指标,采用FCFS策略的结果为5.2次和5.6次,而所提方法均为0次。

本文引用格式

张军峰 , 马曌 , 杜卓铭 , 胡荣 . 多跑道混合运行模式进场航班动态鲁棒调度[J]. 航空学报, 2025 , 46(7) : 330956 -330956 . DOI: 10.7527/S1000-6893.2024.30956

Abstract

To address the impact of uncertainties in the terminal area on flight arrival times, a two-stage stochastic programming method for arrival aircraft based on chance constraints is proposed to achieve robustness in the scheduling scheme. Firstly, based on historical flight data, the uncertainty distribution of arrival times from the entry fix to the Initial Approach Fix (IAF) is identified. Secondly, considering the uncertainty distribution, chance constraints are introduced to limit the probability of violating separation constraints, and a two-stage stochastic programming model is then established. The first stage pertains to approach control, flights are pre-sequenced and scheduled before reaching the IAF, so as to minimize landing sequence length and flight time; the second stage pertains to final approach control, safety intervals are established to reduce landing delays on the runway. Subsequently, the Rolling Horizon Control (RHC) algorithm for stochastic programming is introduced to satisfy the real-time requirements of approach operations. Then, the model is reconstructed and solved based on the Sample Average Approximation (SAA) algorithm. Finally, the proposed method is validated using actual operational data from Guangzhou Baiyun International Airport. The results demonstrate that the proposed RHC algorithm not only ensures solution quality but also significantly enhances model-solving efficiency. Moreover, the robustness of the approach scheduling scheme is improved under the “one landing, one takeoff” and “two landings, one takeoff” operational modes. For the landing delay index, the First-Come, First-Served (FCFS) strategy results in delays 6.1 times and 9.6 times higher than those achieved by the proposed method, respectively; for the violation of separation proportion index, the results of FCFS strategy rates are 20% and 18.9%, whereas the proposed method maintains a rate of 3.5% in both modes. Regarding the sequence exchange number, the results of FCFS strategy incurs 5.2 and 5.6 exchanges, respectively, while the proposed method incurs zero exchanges in both modes.

参考文献

1 IKLI S, MANCEL C, MONGEAU M, et al. The aircraft runway scheduling problem: A survey[J]. Computers & Operations Research2021132: 105336.
2 SAMà M, D’ARIANO A, D’ARIANO P, et al. Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations[J]. Omega201767: 81-98.
3 BENNELL J A, MESGARPOUR M, POTTS C N. Dynamic scheduling of aircraft landings[J]. European Journal of Operational Research2017258(1): 315-327.
4 ZHANG J F, ZHAO P L, ZHANG Y, et al. Criteria selection and multi-objective optimization of aircraft landing problem[J]. Journal of Air Transport Management202082: 101734.
5 ZHANG J F, ZHAO P L, YANG C W, et al. A new meta-heuristic approach for aircraft landing problem[J]. Transactions of Nanjing University of Aeronautics and Astronautics202037(2): 197-208.
6 刘继新, 江灏, 董欣放, 等. 基于空中交通密度的进场航班动态协同排序方法[J]. 航空学报202041(7): 323717.
  LIU J X, JIANG H, DONG X F, et al. Dynamic collaborative sequencing method for arrival flights based on air traffic density[J]. Acta Aeronautica et Astronautica Sinica202041(7): 323717 (in Chinese).
7 HONG Y, CHO N, KIM Y, et al. Multiobjective optimization for aircraft arrival sequencing and scheduling[J]. Journal of Air Transportation201725(4): 115-122.
8 张军峰, 游录宝, 杨春苇, 等. 基于多目标帝国竞争算法的进场排序与调度[J]. 航空学报202142(6): 324439.
  ZHANG J F, YOU L B, YANG C W, et al. Arrival sequencing and scheduling based on multi-objective Imperialist competitive algorithm[J]. Acta Aeronautica et Astronautica Sinica202142(6): 324439 (in Chinese).
9 TIELROOIJ M, BORST C, VAN PAASSEN M M, et al. Predicting arrival time uncertainty from actual flight information[C]∥Proceedings of the 11th USA/Europe Air Traffic Management Research and Development Seminar. Brussels:Eurocontrol, 2015: 577-586.
10 YIN J N, MA Y Y, HU Y X, et al. Delay, throughput and emission tradeoffs in airport runway scheduling with uncertainty considerations[J]. Networks and Spatial Economics202121: 85-122.
11 BOSSON C S, SUN D F. Optimization of airport surface operations under uncertainty[J]. Journal of Air Transportation201624(3): 84-92.
12 CECEN R K. A stochastic programming model for the aircraft sequencing and scheduling problem considering flight duration uncertainties[J]. The Aeronautical Journal2022126(1304): 1736-1751.
13 D?NMEZ K. Aircraft sequencing under the uncertainty of the runway occupancy times of arrivals during the backtrack procedure[J]. The Aeronautical Journal2023127(1310): 562-580.
14 KHASSIBA A, CAFIERI S, BASTIN F, et al. Two-stage stochastic programming models for the extended aircraft arrival management problem with multiple pre-scheduling points[J]. Transportation Research Part C: Emerging Technologies2022142: 103769.
15 CHEN X D, YU H, CAO K, et al. Uncertainty-aware flight scheduling for airport throughput and flight delay optimization[J]. IEEE Transactions on Aerospace and Electronic Systems202056(2): 853-862.
16 NG K K H, LEE C K M, CHAN F T S, et al. Robust aircraft sequencing and scheduling problem with arrival/departure delay using the min-max regret approach[J]. Transportation Research Part E: Logistics and Transportation Review2017106: 115-136.
17 KAPOLKE M, FüRSTENAU N, HEIDT A, et al. Pre-tactical optimization of runway utilization under uncertainty?[J]. Journal of Air Transport Management201656: 48-56.
18 ESCHE E, YOU B, REPKE J U. Optimal design via chance-constrained or two-stage stochastic programming[C]∥Proceedings of the 9th International Conference on Foundations of Computer-Aided Process Design. Amsterdam: Elsevier, 2019: 169-174.
19 KHASSIBA A, BASTIN F, CAFIERI S, et al. Two-stage stochastic mixed-integer programming with chance constraints for extended aircraft arrival management[J]. Transportation Science202054(4): 897-919.
20 KIM S, PASUPATHY R, HENDERSON S G. A guide to sample average approximation[M]∥FU M C. Handbook of simulation optimization. New York: Springer, 2015: 207-243.
21 WU L J, ZHAN Z H, HU X M, et al. Multi-runway aircraft arrival scheduling: A receding horizon control based ant colony system approach[C]∥2019 IEEE Congress on Evolutionary Computation. Piscataway: IEEE Press, 2019: 538-545.
22 ZHANG J F, PENG Z H, YANG C W, et al. Data-driven flight time prediction for arrival aircraft within the terminal area?[J]. IET Intelligent Transport Systems202216(2): 263-275.
23 GONZE F, HUENS E, JUNGERS R M, et al. Probabilistic occupancy counts and flight criticality measures in air traffic management[J]. Journal of Air Transportation201826(3): 94-103.
24 XIA P P, ZHANG L, LI F Z. Learning similarity with cosine similarity ensemble?[J]. Information Sciences2015307: 39-52.
25 KHASSIBA A, BASTIN F, GENDRON B, et al. Extended aircraft arrival management under uncertainty: A computational study[J]. Journal of Air Transportation201927(3): 131-143.
文章导航

/