基于气动/轨迹/控制耦合的飞/发一体高超声速飞机气动外形优化设计
收稿日期: 2024-06-26
修回日期: 2024-08-06
录用日期: 2024-11-04
网络出版日期: 2024-11-14
基金资助
国家自然科学基金(11972308)
Aerodynamic shape optimization design of airframe/propulsion integrated hypersonic aircraft with aerodynamics/trajectory/ control coupling
Received date: 2024-06-26
Revised date: 2024-08-06
Accepted date: 2024-11-04
Online published: 2024-11-14
Supported by
National Natural Science Foundation of China(11972308)
针对吸气式高超声速飞机飞/发一体布局面临的多学科耦合问题,提出了一种基于飞行任务需求、考虑气动/轨迹/控制等学科的内外嵌套2层多学科优化设计方法。首先,以航程或航时等飞行性能为优化目标、飞行可控为约束、SQP为优化算法建立了外层飞行器外形参数优化方法。其次,采用RANS方法对选定外形开展气动特性评估,并基于所得气动数据建立了几何参数到气动特性的映射模型。随后,在基准动力数据(初始构型动力数据)的基础上,建立了考虑前体参数及尾喷管参数影响的冲压发动机推力模型。然后,以与外层相同的性能目标为优化目标、飞行可控为约束,选用直接打靶法、SQP算法分别作为轨迹离散策略与优化算法,建立了内层轨迹优化方法。最后,将内、外层优化相结合,并通过采用自抗扰控制技术开展飞行轨迹可控性评估,实现了适用于飞/发一体高超声速飞行器的内外嵌套2层多学科优化设计方法。以类SR-72高超声速飞机为对象,针对典型前体/进气道一体化参数和后体/尾喷管一体化参数,开展了以航程最优为目标的优化设计。优化结果表明:在整个飞行任务中,优化设计外形在初始外形基础上最大航程增大了28.98%,性能得到显著提升,验证了所提出的气动/轨迹/控制多学科优化设计方法的有效性。
屈峰 , 王青 , 程少文 , 王开强 . 基于气动/轨迹/控制耦合的飞/发一体高超声速飞机气动外形优化设计[J]. 航空学报, 2025 , 46(4) : 130874 -130874 . DOI: 10.7527/S1000-6893.2024.30874
To address the multidisciplinary coupling problem faced by the air-breathing hypersonic airframe/propulsion integrated design, a two-layer multidisciplinary optimization design method is proposed based on flight mission requirements and considers aerodynamics, trajectory, and control. Firstly, an optimization method for the geometric parameters is established using sequential quadratic programming to optimize the flight performance such as flight range and duration, with controllability as the constraint. Then, by solving the Reynolds Average Navier-Stokes(RANS) equations, the aerodynamic characteristics of the selected shape is obtained. With the obtained aerodynamic data, a mapping model from geometric parameters to aerodynamic characteristics is constructed. Subsequently, based on the existing dynamic data, a thrust model of the scramjet engine considering the influence of forebody parameters and nozzle parameters is established. After that, an internal trajectory optimization method is proposed. This method maintains the same optimization objective and constrain as geometric parameter optimization, and adopts the direct shooting method for discrete and the SQP algorithm for optimization. In addition, a control simulation model is constructed based on, which was combined with the to establish an aerodynamic, trajectory and control integrated design method inner trajectory optimization and outer parameter optimization are combined and the Active Disturbance Rejection Control (ADRC) technology is used evaluate trajectory controllability, achieving two-layer multidisciplinary optimization for airframe/propulsion integrated design. Finally, optimization of the shape parameters and aircraft trajectory of the SR-72-like hypersonic vehicle are carried out to achieve the optimal range. The optimization results show that the maximum range is increased by 28.98% during the whole flight mission, demonstrating the effectiveness of the proposed method.
1 | 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012. |
CAI G B, XU D J. Hypersonic vehicle technology[M]. Beijing: Science Press, 2012 (in Chinese). | |
2 | WANG F, FAN P F, ZHANG J, et al. Preventing inlet unstart in air-breathing hypersonic vehicles using adaptive backstepping control with state constraints[J]. Acta Astronautica, 2023, 211: 498-509. |
3 | 罗世彬. 高超声速飞行器机体/发动机一体化设计[M]. 北京: 科学出版社, 2018. |
LUO S B. Integrated design of hypersonic vehicle body/engine[M]. Beijing: Science Press, 2018 (in Chinese). | |
4 | 闵昌万, 付秋军, 焦子涵, 等. 史记·高超声速飞行[M]. 北京: 科学出版社, 2019. |
MIN C W, FU Q J, JIAO Z H. Historical records hypersonic flight[M]. Beijing: Science Press, 2019 (in Chinese). | |
5 | 罗金玲, 李超, 徐锦. 高超声速飞行器机体/推进一体化设计的启示[J]. 航空学报, 2015, 36(1): 39-48. |
LUO J L, LI C, XU J. Inspiration of hypersonic vehicle with airframe/propulsion integrated design[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 39-48 (in Chinese). | |
6 | 罗金玲, 周丹, 康宏琳, 等. 典型气动问题试验方法研究的综述[J]. 空气动力学学报, 2014(5): 600-609. |
LUO J L, ZHOU D, KANG H L, et al. Summarizatipn pf experimental methpds asspciated with typical aerpdynamic issues[J]. Acta Aerodynamica Sinica, 2014(5): 600-609 (in Chinese). | |
7 | 陈小前, 颜力, 黄伟, 等. 高超声速飞行器多学科设计优化理论及应用[M]. 北京: 科学出版社, 2020. |
CHEN X Q, YAN L, HUANG W. Theory and application of multidisciplinary design optimization for hypersonic vehicle[M]. Beijing: Science Press, 2020 (in Chinese). | |
8 | SMITH C S. Design of marine structures in composite materials[M]. London: Elsevier Science Publishers, 1990. |
9 | 郑安波, 马汉东, 罗小云. 战术导弹多目标多学科设计优化[J]. 航空学报, 2013, 34(11): 2557-2564. |
ZHENG A B, MA H D, LUO X Y. Multiobjective multidisciplinary design optimization of missile[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11): 2557-2564 (in Chinese). | |
10 | 胡添元, 余雄庆. 多学科设计优化在非常规布局飞机总体设计中的应用[J]. 航空学报, 2011, 32(1): 117-127. |
HU T Y, YU X Q. Preliminary design of unconventional configuration aircraft using multidisciplinary design optimization[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 117-127 (in Chinese). | |
11 | JASA J P, HWANG J T, MARTINS J R R A. Design and trajectory optimization of a morphing wing aircraft[C]∥Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2018. |
12 | 陈小前, 陈献琪, 曹璐, 等. 卫星总体与姿态控制一体化优化设计方法[J]. 宇航学报, 2023, 44(4): 465-475. |
CHEN X Q, CHEN X Q, CAO L, et al. Integrated optimization design method of satellite overall system and attitude control[J]. Journal of Astronautics, 2023, 44(4): 465-475 (in Chinese). | |
13 | 刘峰, 赵彦凯, 姚竞争, 等. 基于主体参数化分析的潜水器多学科优化[J]. 中国机械工程, 2021, 32(8): 997-1007. |
LIU F, ZHAO Y K, YAO J Z. Multidisciplinary optimization of submersibles based on parametric analysis of main body [J]. China Mechanical Engineering, 2021, 32(8): 997-1007 (in Chinese). | |
14 | 张海瑞, 秦梦, 周国峰, 等. 基于气动-弹道一体化模型的飞行器外形优化设计[J]. 国防科技大学学报, 2021, 43(1): 27-32. |
ZHANG H R, QIN M, ZHOU G F, et al. Shape optimization design for vehicles based on aerodynamic and trajectory integrated model[J]. Journal of National University of Defense Technology, 2021, 43(1): 27-32 (in Chinese). | |
15 | 粟华, 谷良贤, 龚春林. 基于高拟真度模型的再入飞行器多学科优化[J]. 西北工业大学学报, 2013(3): 339-344. |
SU H, GU L X, GONG C L. Multidisciplinary design optimization of reentry vehicle based on high fidelity model[J]. Journal of Northwestern Polytechnical University, 2013(3): 339-344 (in Chinese). | |
16 | 李正洲. 考虑操稳特性的有翼再入飞行器总体多学科设计优化[D]. 南京: 南京航空航天大学, 2018. |
LI Z Z. Overall multidisciplinary design optimization of winged reentry vehicle considering handling stability characteristics[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
17 | 郑总准, 吴浩, 王永骥. 基于序列二次规划算法的再入轨迹优化研究[J]. 航天控制, 2009, 27(6): 8-13, 18. |
ZHENG Z Z, WU H, WANG Y J. Reentry trajectory optimization using sequential quadratic programming[J]. Aerospace Control, 2009, 27(6): 8-13, 18 (in Chinese). | |
18 | GILL P E, MURRAY W, SAUNDERS M A. SNOPT: An SQP algorithm for large-scale constrained optimization[J]. SIAM Review, 2005, 47(1): 99-131. |
19 | BOGGS P T, TOLLE J W. Sequential quadratic programming[J]. Acta Numerica, 1995, 4: 1-51. |
20 | 张泰. 吸气式高超声速飞行器轨迹优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
ZAHNG T. Research on trajectory optimization of air-breathing hypersonic vehicle [D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). | |
21 | 张勇. 一种飞行演示器的上升段轨迹优化及仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2012. |
ZHANG Y. Research on trajectory optimization and simulation of ascending phase of a flight demonstrator [D]. Harbin: Harbin Engineering University, 2012 (in Chinese). | |
22 | HARGRAVES C R, PARIS S W. Direct trajectory optimization using nonlinear programming and collocation[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(4): 338-342. |
23 | 黄国强, 陆宇平, 南英. 飞行器轨迹优化数值算法综述[J]. 中国科学: 技术科学, 2012, 42(9): 1016-1036. |
HUANG G Q, LU Y P, NAN Y. A survey of numerical algorithms for trajectory optimization of flight vehicles [J]. Scientia Sinica Technologica, 2012, 42(9): 1016-1036 (in Chinese). | |
24 | KELLY M. An introduction to trajectory optimization: how to do your own direct collocation[J]. SIAM Review, 2017, 59(4): 849-904. |
25 | LUO B, WU H N, HUANG T W, et al. Reinforcement learning solution for HJB equation arising in constrained optimal control problem[J]. Neural Networks, 2015, 71: 150-158. |
26 | LEWIS A D. The maximum principle of Pontryagin in control and in optimal control[D]. Kingston: Queen’s University, 2006. |
27 | 雍恩米, 陈磊, 唐国金. 飞行器轨迹优化数值方法综述[J]. 宇航学报, 2008, 29(2): 397-406. |
YONG E M, CHEN L, TANG G J. A survey of numerical methods for trajectory optimization of spacecraft[J]. Journal of Astronautics, 2008, 29(2): 397-406 (in Chinese). | |
28 | 崔乃刚, 郭冬子, 李坤原, 等. 飞行器轨迹优化数值解法综述[J]. 战术导弹技术, 2020(5): 37-51, 75. |
CUI N G, GUO D Z, LI K Y, et al. A survey of numerical methods for aircraft trajectory optimization[J]. Tactical Missile Technology, 2020(5): 37-51, 75 (in Chinese). | |
29 | HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906. |
30 | 郑雄, 刘竹生, 杨勇, 等. 基于LADRC的RBCC高超声速飞行器轨迹跟踪[J]. 导弹与航天运载技术, 2019 (5): 84-90. |
ZHENG X, LIU Z S, YANG Y. Trajectory tracking for RBCC-powered hypersonic vehicle based on LADRC [J]. Missiles and Space Vehicles, 2019 (5):84-90 (in Chinese). | |
31 | TAKAHASHI T T. Flying with eyes wide shut-A reflection on the Hollywood view of real world aircraft performance[C]∥AIAA Aviation 2023 Forum. Reston: AIAA, 2023. |
32 | HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Reston: AIAA, 1994. |
33 | 姚卫, 张政, 赵伟, 等. 高超声速飞/发一体化进展与趋势[J]. 推进技术, 2023, 44(8): 1-16. |
YAO W, ZHANG Z, ZHAO W, et al. Advances and trends in airframe/engine integration of hypersonic vehicles[J]. Journal of Propulsion Technology, 2023, 44(8): 1-16 (in Chinese). | |
34 | 薛龙生. 高超飞行器前体进气道一体化气动设计与试验研究[D]. 南京: 南京航空航天大学, 2018. |
XUE L S. Integrated aerodynamic design and experimental study of hypersonic vehicle forebody inlet[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
35 | AKIHISA D, KANDA T, TANI K, et al. Effect of integration of scramjet into airframe on engine performance and payload[J]. Journal of Propulsion and Power, 2002, 18(5): 1026-1032. |
36 | 吴先宇. 超燃冲压发动机一体化流道设计优化研究[D]. 长沙: 国防科学技术大学, 2007. |
WU X Y. Study on optimization of integrated flow passage design for scramjet[D]. Changsha: National University of Defense Technology, 2007 (in Chinese). | |
37 | 韩信, 张子健, 马凯夫, 等. 超燃冲压发动机喷管推力性能理论预测[J]. 气体物理, 2022, 7(1): 1-8. |
HAN X, ZHANG Z J, MA K F, et al. Theoretical prediction on the nozzle thrust of scramjets[J]. Physics of Gases, 2022, 7(1): 1-8 (in Chinese). |
/
〈 |
|
〉 |