电子电气工程与控制

基于可解释性强化学习的空战机动决策方法

  • 杨书恒 ,
  • 张栋 ,
  • 熊威 ,
  • 任智 ,
  • 唐硕
展开
  • 1.西北工业大学 航天学院,西安 710072
    2.西北工业大学 陕西省空天飞行器设计重点实验室,西安 710072
.E-mail: zhangdong@nwpu.edu.cn

收稿日期: 2023-11-28

  修回日期: 2024-01-10

  录用日期: 2024-04-07

  网络出版日期: 2024-04-12

基金资助

群体协同与自主实验室开放基金(QXZ23013402)

Decision-making method for air combat maneuver based on explainable reinforcement learning

  • Shuheng YANG ,
  • Dong ZHANG ,
  • Wei XIONG ,
  • Zhi REN ,
  • Shuo TANG
Expand
  • 1.School of Astronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.Shaanxi Key Laboratory of Aerospace Flight Vehicle Design,Northwestern Polytechnical University,Xi’an 710072,China

Received date: 2023-11-28

  Revised date: 2024-01-10

  Accepted date: 2024-04-07

  Online published: 2024-04-12

Supported by

Collective Intelligence & Collaboration Laboratory(QXZ23013402)

摘要

智能空战是未来空战的趋势,深度强化学习是实现空战智能决策的一条重要技术途径。然而由于深度强化学习的“黑箱模型”特质,存在策略难解释、意图难理解、决策难信任的缺点,给深度强化学习在智能空战中的应用带来了挑战。针对这些问题,提出了一种基于可解释性强化学习的智能空战机动决策方法。首先,基于策略级解释方法和动态贝叶斯网络构建了可解释性模型和机动意图识别模型;其次,通过决策重要性的计算和机动意图概率实现了无人机机动决策过程的意图层面可解释;最后,基于意图解释结果对深度强化学习算法的奖励函数和训练策略进行修正,并通过仿真对比分析验证了所提设计方法的有效性。所提方法能够获得有效性优、可靠性强、可信度高的空战机动策略。

本文引用格式

杨书恒 , 张栋 , 熊威 , 任智 , 唐硕 . 基于可解释性强化学习的空战机动决策方法[J]. 航空学报, 2024 , 45(18) : 329922 -329922 . DOI: 10.7527/S1000-6893.2023.29922

Abstract

Intelligent air combat is the trend of air combat in the future, and deep reinforcement learning is an important technical way to realize intelligent decision-making in air combat. However, due to the characteristic of “black box model”, deep reinforcement learning has the shortcomings such as difficulty in explaining strategies, understanding intentions, and trusting decisions, which brings challenges to the application of deep reinforcement learning in intelligent air combat. To solve these problems, an intelligent air combat maneuver decision-making method is proposed based on explainable reinforcement learning. Firstly, based on the strategy-level explanation method and dynamic Bayesian network, an interpretability model and the maneuvering intention recognition model are constructed. Secondly, through calculation of the importance of the decision and the probability of maneuvering intention, the intention-level of the Unmanned Aerial Vehicle (UAV) maneuver decision-making process can be explained. Finally, based on the intent interpretation results, the reward function and training strategy of the deep reinforcement learning algorithm are modified, and the effectiveness of the proposed method is verified by simulation and comparative analysis. The proposed method can obtain air combat maneuver strategies with excellent effectiveness, strong reliability, and high credibility.

参考文献

1 孙智孝, 杨晟琦, 朴海音, 等. 未来智能空战发展综述[J]. 航空学报202142(8): 525799.
  SUN Z X, YANG S Q, PIAO H Y, et al. A survey of air combat artificial intelligence[J]. Acta Aeronautica et Astronautica Sinica202142(8): 525799 (in Chinese).
2 GETZ W M, PACHTER M. Two-target pursuit-evasion differential games in the plane[J]. Journal of Optimization Theory and Applications198134(3): 383-403.
3 GENG W X, KONG F E, MA D Q. Study on tactical decision of UAV medium-range air combat[C]∥ The 26th Chinese Control and Decision Conference. Piscataway: IEEE Press, 2014: 135-139.
4 VIRTANEN K, RAIVIO T, HAMALAINEN R P. Modeling pilot’s sequential maneuvering decisions by a multistage influence diagram[J]. Journal of Guidance, Control, and Dynamics200427(4): 665-677.
5 LI B, LIANG S Y, TIAN L Y, et al. Intelligent aircraft maneuvering decision based on CNN[C]∥ Proceedings of the 3rd International Conference on Computer Science and Application Engineering. New York: ACM, 2019: 1–5.
6 周攀, 黄江涛, 章胜, 等. 基于深度强化学习的智能空战决策与仿真[J]. 航空学报202344(4): 126731.
  ZHOU P, HUANG J T, ZHANG S, et al. Intelligent air combat decision making and simulation based on deep reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica202344(4): 126731 (in Chinese).
7 李文韬,方峰,王振亚,等.引入混合超网络改进MADDPG的双机编队空战自主机动决策[J/OL]. 航空学报,(2023-11-02)[2023-11-28]. .
  LI W T, FANG F, WANG Z Y, et al. Intelligent maneuvering decision-making in two-UCAVs cooperative air combat based on improved MADDPG with hybird hyper network[J/OL]. Acta Aeronautica et Astronautica Sinica,(2023-11-02)[2023-11-28]..
8 李曾琳, 李波, 白双霞, 等. 基于AM-SAC的无人机自主空战决策[J]. 兵工学报202344(9): 2849-2858.
  LI Z L, LI B, BAI S X, et al. UAV autonomous air combat decision-making based on AM-SAC[J]. Acta Armamentarii202344(9): 2849-2858 (in Chinese).
9 符小卫, 徐哲, 朱金冬, 等. 基于PER-MATD3的多无人机攻防对抗机动决策[J]. 航空学报202344(7): 327083.
  FU X W, XU Z, ZHU J D, et al. Maneuvering decision-making of multi-UAV attack-defence confrontation based on PER-MATD3[J]. Acta Aeronautica et Astronautica Sinica202344(7): 327083 (in Chinese)
10 TOPIN N, MILANI S, FANG F, et al. Iterative bounding MDPs: Learning interpretable policies via non-interpretable methods[C]∥ Proceedings of the AAAI Conference on Artificial Intelligence. 2021.
11 SILVA A, GOMBOLAY M, KILLIAN T, et al. Optimization methods for interpretable differentiable decision trees applied to reinforcement learning[C]∥Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. 2020: 1855--1865.
12 LANDAJUELA M, PETERSEN B K, KIM S, et al. Discovering symbolic policies with deep reinforcement learning[C]∥ Proceedings of the 38th International Conference on Machine Learning. 2021: 5979--5989.
13 DANESH M H, KOUL A, FERN A, et al. Re-understanding finite-state representations of recurrent policy networks[C]∥Proceedings of the 38th International Conference on Machine Learning. 2021: 2388-2397.
14 GREYDANUS S, KOUL A, DODGE J, et al. Visualizing and understanding Atari agents[C]∥Proceedings of the 35th International Conference on Machine Learning. 2018: 1792-1801.
15 BASTANI O, PU Y W, SOLAR-LEZAMA A. Verifiable reinforcement learning via policy extraction[C]∥ Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018: 2499-2509.
16 TJOA E, GUAN C T. A survey on eXplainable Artificial Intelligence (XAI): Toward medical XAI[J]. IEEE Transactions on Neural Networks and Learning Systems202132(11): 4793-4813.
17 TOPIN N, VELOSO M. Generation of policy-level explanations for reinforcement learning[C]∥ Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. 2019: 2514-2521.
18 高阳阳, 余敏建, 韩其松, 等. 基于改进共生生物搜索算法的空战机动决策[J]. 北京航空航天大学学报201945(3): 429-436.
  GAO Y Y, YU M J, HAN Q S, et al. Air combat maneuver decision-making based on improved symbiotic organisms search algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics201945(3): 429-436 (in Chinese).
19 杜海文, 崔明朗, 韩统, 等. 基于多目标优化与强化学习的空战机动决策[J]. 北京航空航天大学学报201844(11): 2247-2256.
  DU H W, CUI M L, HAN T, et al. Maneuvering decision in air combat based on multi-objective optimization and reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics201844(11): 2247-2256 (in Chinese).
20 李永丰, 史静平, 章卫国, 等. 深度强化学习的无人作战飞机空战机动决策[J]. 哈尔滨工业大学学报202153(12): 33-41.
  LI Y F, SHI J P, ZHANG W G, et al. Maneuver decision of UCAV in air combat based on deep reinforcement learning[J]. Journal of Harbin Institute of Technology202153(12): 33-41 (in Chinese).
21 LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[DB/OL]. arXiv: , 2015.
22 GUO W B, WU X, KHAN U, et al. EDGE: Explaining deep reinforcement learning policies[C]∥Advances in Neural Information Processing Systems. 2021: 12222-12236.
23 DUVENAUD D, NICKISCH H, RASMUSSEN C. Additive Gaussian processes[C]∥ Proceedings of the 24th International Conference on Neural Information Processing Systems. New York: ACM, 2011: 226-234.
文章导航

/