月球大椭圆太阳同步测控回归冻结轨道设计
收稿日期: 2023-11-30
修回日期: 2024-02-21
录用日期: 2024-03-26
网络出版日期: 2024-05-17
基金资助
国家科技重大专项
Design of sun-synchronous and repeating tracking condition elliptical lunar frozen orbits
Received date: 2023-11-30
Revised date: 2024-02-21
Accepted date: 2024-03-26
Online published: 2024-05-17
Supported by
National Science and Technology Major Project
针对我国嫦娥六号月背采样返回任务中继通信的需求,提出了一种全新的月球大椭圆太阳同步测控回归冻结轨道类型及其相应的设计方法。采用von Zeipel正则变换方法,建立了考虑地球三体引力1阶、2阶项和月球J2项的大椭圆环月轨道的平均运动方程。基于平均运动方程,给出了冻结轨道所需满足的条件和相应的约束方程。在冻结轨道的基础上,进一步提出了太阳同步冻结轨道的条件,揭示了其针对月背采样返回任务可长期稳定保持和指定采样点的光照条件的独特优点,并解决了中继卫星轨道与嫦娥六号多窗口发射匹配的难题;在近地轨道节点周期概念的基础上,提出了月球轨道的测控回归概念,并建立了相应的约束方程,实现了使命轨道周期与测控条件重复周期的共振,进而长期保持稳定的测控条件。以嫦娥六号中继使命轨道设计为背景,给出了同时满足冻结、太阳同步和测控回归这3个条件的月球大椭圆中继轨道设计流程和设计结果。利用真实全摄动模型对轨道设计结果进行了仿真验证,结果表明:所给出的中继轨道参数冻结良好,与太阳同步稳定,测控回归精度高,可以完全满足嫦娥六号月背中继任务要求。
孟占峰 . 月球大椭圆太阳同步测控回归冻结轨道设计[J]. 航空学报, 2024 , 45(18) : 229926 -229926 . DOI: 10.7527/S1000-6893.2023.29926
To satisfy the relay communication requirements of the Chang’E-6 lunar far side sample and return mission, a new type of frozen lunar orbit under the Sun-synchronous repeating tracking condition and the corresponding design method are proposed. By using the von Zeipel canonical transformation method, the mean motion equations of high elliptical lunar orbits are obtained, taking into account the first and second order terms of the Earth’s three-body perturbation and the J2 terms of the Moon. Based on the mean motion equations, the frozen orbit conditions and corresponding constraint equations are established. Using the frozen condition, the conditions of the Sun-synchronous frozen orbit are further proposed, and the unique advantages of this type of orbit for the lunar far-side sample and return mission are revealed. The matching problem of the relay satellite orbit with the Chang’E-6 multi-launch windows is resolved. Based on the concept of nodal period of low Earth orbit, the concept of repeating tracking condition for lunar orbit is proposed, and the corresponding constraint equation is established. The repeated periodic resonance of the mission orbit period with tracking conditions is realized, and stable tracking conditions are maintained for a long period. The detailed design process and results of Chang’E-6 lunar high elliptical relay orbit satisfying the frozen conditions, Sun-synchronous and repeating tracking are given. The high-fidelity perturbation model is used to verify the orbit design results. The simulation results show that the relay orbit elements are frozen stable and well synchronized with the Sun, and the accuracy of the repeating tracking condition is high, satisfying the requirements of the Chang’E-6 lunar far side sample return mission.
1 | BROUCKE R A. Long-term third-body effects via double averaging[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1): 27-32. |
2 | DE ALMEIDA PRADO A F B. Third-body perturbation in orbits around natural satellites[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1): 33-40. |
3 | DOMINGOS R C, DE MORAES R V, DE ALMEIDA PRADO A F B. Third-body perturbation in the case of elliptic orbits for the disturbing body[J]. Mathematical Problems in Engineering, 2008, 2008: 763654. |
4 | ROSCOE C W T, VADALI S R, ALFRIEND K T. Third-body perturbation effects on satellite formations[J]. The Journal of the Astronautical Sciences, 2013, 60(3): 408-433. |
5 | MA Y C, HE Y C, XU M, et al. Global searches of frozen orbits around an oblate Earth-like planet[J]. Astrodynamics, 2022, 6(3): 249-268. |
6 | LARA M. Simplified equations for computing science orbits around planetary satellites[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(1): 172-181. |
7 | LARA M, PALACIáN J F. Hill problem analytical theory to the order four: Application to the computation of frozen orbits around planetary satellites[J]. Mathematical Problems in Engineering, 2009, 2009: 753653. |
8 | GIACAGLIA G E O, MURPHY J P, FELSENTREGER T L. A semi-analytic theory for the motion of a lunar satellite[J]. Celestial Mechanics, 1970, 3(1): 3-66. |
9 | FELSENTREGER T L GIACAGLIA G E O, MURPHY J P, et al. The motion of a satellite of the moon: NASA-TM-X-55295[R]. Washington, D.C.: NASA, 1967. |
10 | NIE T, GURFIL P. Lunar frozen orbits revisited[J]. Celestial Mechanics and Dynamical Astronomy, 2018, 130(10): 61. |
11 | D’AVANZO P, TEOFILATTO P, ULIVIERI C. Long-term effects on lunar orbiter[J]. Acta Astronautica, 1997, 40(1): 13-20. |
12 | ABAD A, ELIPE A, TRESACO E. Analytical model to find frozen orbits for a lunar orbiter[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3): 888-898. |
13 | FOLTA D, QUINN D. Lunar frozen orbits: AIAA-2006-6749 [R]. Reston: AIAA, 2006. |
14 | CINELLI M, ORTORE E, MENGALI G, et al. Lunar orbits for telecommunication and navigation services[J]. Astrodynamics, 2024, 8(1): 209-220. |
15 | ELY T A. Stable constellations of frozen elliptical inclined lunar orbits[J]. The Journal of the Astronautical Sciences, 2005, 53(3): 301-316. |
16 | ELY T A, LIEB E. Constellations of elliptical inclined lunar orbits providing polar and global coverage[J]. The Journal of the Astronautical Sciences, 2006, 54(1): 53-67. |
17 | GRAMLING J J, NGAN Y P, QUINN D A, et al. A lunar communications and navigation satellite concept for the robotic lunar exploration program: AIAA-2006-5364[R]. Reston: AIAA, 2006. |
18 | HOWELL K C, BREAKWELL J V. Almost rectilinear halo orbits[J]. Celestial Mechanics, 1984, 32(1): 29-52. |
19 | WHITLEY R, DAVIS D C, BURKE L M, et al. Earth-Moon near rectilinear halo and butterfly orbits for lunar surface exploration[C]∥ AIAA/AAS Astrodynamics Specialist Conference. Reston: AIAA, 2018. |
20 | OLESON S R, BHASIN K B, MCGUIRE M L, et al. Advance communications and navigation satellite conceptual design for lunar network-centric operations: AIAA-2009-6719[R]. Reston: AIAA, 2009. |
21 | CUTTING G H, FRAUTNICK J C, BORN G H. Orbit analysis for Seasat-A[J]. Journal of the Astronautical Sciences, 1978, 26: 315-342. |
/
〈 |
|
〉 |