基于转捩模型的HyTRV外形转捩特性与攻角影响分析
收稿日期: 2023-11-09
修回日期: 2024-02-01
录用日期: 2024-03-20
网络出版日期: 2024-04-07
基金资助
国家科技重大专项
Influence of transition characteristics and angle of attack of HyTRV based on transition model
Received date: 2023-11-09
Revised date: 2024-02-01
Accepted date: 2024-03-20
Online published: 2024-04-07
Supported by
National Science and Technology Major Project
对于高超声速飞行器,边界层转捩引起的表面热流突升、气动阻力系数增大、进气道流量变化等是影响飞行计划成功与否的关键问题,因此有必要对高超声速边界层转捩现象进行深入研究。采用改进的k⁃ω⁃γ转捩模型对高超声速转捩研究飞行器HyTRV的转捩特征进行了数值模拟,并将数值计算结果与风洞试验结果进行了对比,验证了转捩模型对HyTRV外形的转捩现象具有较好的预测能力。在此基础上,对HyTRV外形的转捩特征进行了研究,发现HyTRV外形迎风面、背风面存在流向涡、第二模态、横流模态3种扰动失稳诱导的边界层转捩;分析了不同攻角下HyTRV外形转捩阵面分布规律,发现当来流攻角增大,迎风面上的流向涡被压扁,背风面腰部位置的流向涡向顶部移动,流向涡的变形、移动导致转捩阵面发生变化,并出现了不同转捩区域融合的现象。研究结果不仅揭示了HyTRV外形随攻角变化的规律,而且展示了改进的k⁃ω⁃γ转捩模型在处理复杂飞行器外形问题时的巨大应用潜力,为深入探究复杂飞行器边界层转捩现象提供了一种有效的分析工具。
孟庆东 , 雷娟棉 , 周玲 . 基于转捩模型的HyTRV外形转捩特性与攻角影响分析[J]. 航空学报, 2024 , 45(18) : 129855 -129855 . DOI: 10.7527/S10006893.2023.29855
For hypersonic vehicles, certain issues are crucial to the success of flight plans, including sudden increase in surface heat flux, rising aerodynamic drag coefficients, and changes in intake airflow caused by boundary layer transition. Therefore, conducting in-depth research into boundary layer transition phenomena at hypersonic speeds is imperative. An improved k-ω-γ transition model is utilized to numerically simulate the transition characteristics of the Hypersonic Transition Research Vehicle (HyTRV). Firstly, the results of the baseline condition of the HyTRV obtained with the improved k-ω-γ transition model are compared with the results of wind tunnel test, affirming that the transition model possesses a good predictive capability for the transition phenomenon of the HyTRV configuration. Then, the transition properties of the HyTRV configuration are analyzed, disclosing the existence of streamwise vortex instability, secondary instability, and cross-flow instability on HyTRV to induce boundary layer transitions. Finally, different transition configurations of HyTRV at various angles of attack are investigated. As the angle of attack increases, the streamwise vortex on the windward surface becomes compressed, and the streamwise vortex on the leeward surface moves upward. The deformation and movement of the streamwise vortex lead to changes in the transition configurations, which results in the merging of different transition areas. This research not only reveals the pattern of changes in the HyTRV’s shape with varying angles of attack, but also demonstrates the significant application potential of the improved k-ω-γ transition model in addressing complex shapes of hypersonic vehicles. It offers an effective analytical tool for in-depth exploration of boundary layer phenomena in complex vehicles.
1 | 刘强, 涂国华, 罗振兵, 等. 延迟高超声速边界层转捩技术研究进展[J]. 航空学报, 2022, 43(7): 025357. |
LIU Q, TU G H, LUO Z B, et al. Progress in hypersonic boundary layer transition delay control[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 025357 (in Chinese). | |
2 | 李学良, 李创创, 苏伟, 等. 分布式粗糙元对高超声速边界层不稳定性的影响试验[J]. 航空学报, 2024, 45(2): 128627. |
LI X L, LI C C, SU W, et al. Experiment of influence of distributed roughness elements on hypersonic boundary layer instability[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128627 (in Chinese). | |
3 | BORG M, KIMMEL R, STANFIELD S. HIFiRE-5 attachment-line and crossflow instability in a quiet hypersonic wind tunnel[C]∥ 41st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011: 3247. |
4 | KOSTAK H E, BOWERSOX R D W. Preflight ground test analyses of the boundary layer transition (BOLT) flight geometry[J]. Journal of Spacecraft and Rockets, 2020, 58(1): 67-77. |
5 | 袁先旭, 何琨, 陈坚强, 等. MF-1模型飞行试验转捩结果初步分析[J]. 空气动力学学报, 2018, 36(2): 286-293. |
YUAN X X, HE K, CHEN J Q, et al. Preliminary transition research analysis of MF-1[J]. Acta Aerodynamica Sinica, 2018, 36(2): 286-293 (in Chinese). | |
6 | 刘超宇, 屈峰, 孙迪, 等. 基于离散伴随的高超声速密切锥乘波体气动优化设计[J]. 航空学报, 2023, 44(4): 126664. |
LIU C Y, QU F, SUN D, et al. Discretized adjoint based aerodynamic optimization design for hypersonic osculating-cone waverider[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 126664 (in Chinese). | |
7 | 王晓峰, 屈峰, 付俊杰, 等. 基于离散伴随的高超内转式进气道气动优化设计[J]. 航空学报, 2023, 44(19): 128352. |
WANG X F, QU F, FU J J, et al. Discrete adjoint-based aerodynamic design optimization for hypersonic inward turning inlet[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 128352 (in Chinese). | |
8 | LIU S S, YUAN X X, LIU Z Y, et al. Design and transition characteristics of a standard model for hypersonic boundary layer transition research[J]. Acta Mechanica Sinica, 2021, 37(11): 1637-1647. |
9 | CHEN X, DONG S W, TU G H, et al. Boundary layer transition and linear modal instabilities of hypersonic flow over a lifting body[J]. Journal of Fluid Mechanics, 2022, 938: A8. |
10 | XIANG X H, CHEN J Q, YUAN X X, et al. Cross-flow transition model predictions of hypersonic transition research vehicle[J]. Aerospace Science and Technology, 2022, 122: 107327. |
11 | QI H, LI X L, YU C P, et al. Direct numerical simulation of hypersonic boundary layer transition over a lifting-body model HyTRV[J]. Advances in Aerodynamics, 2021, 3(1): 31. |
12 | 陈坚强, 涂国华, 万兵兵, 等. HyTRV流场特征与边界层稳定性特征分析[J]. 航空学报, 2021, 42(6): 124317. |
CHEN J Q, TU G H, WAN B B, et al. Characteristics of flow field and boundary-layer stability of HyTRV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124317 (in Chinese). | |
13 | LANGTRY R, MENTER F. Transition modeling for general CFD applications in aeronautics[C]∥ 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005: 522. |
14 | WANG L, FU S, CARNARIUS A, et al. A modular RANS approach for modelling laminar-turbulent transition in turbomachinery flows[J]. International Journal of Heat and Fluid Flow, 2012, 34: 62-69. |
15 | WANG L, FU S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow, Turbulence and Combustion, 2011, 87(1): 165-187. |
16 | 朱志斌, 尚庆, 沈清. 高超声速边界层转捩模型横流效应修正与应用[J]. 航空学报, 2022, 43(7): 125685. |
ZHU Z B, SHANG Q, SHEN Q. Crossflow modification of transition model for hypersonic boundary layer and its application[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 125685 (in Chinese). | |
17 | 向星皓, 张毅锋, 袁先旭, 等. C?γ?Reθ 高超声速三维边界层转捩预测模型[J]. 航空学报, 2021, 42(9): 625711. |
XIANG X H, ZHANG Y F, YUAN X X, et al. C?γ?Reθ model for hypersonic three-dimensional boundary layer transition prediction[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625711 (in Chinese). | |
18 | 刘清扬, 雷娟棉, 刘周, 等. 适用于可压缩流动的γ?Ret?fRe 转捩模型[J]. 航空学报, 2022, 43(8): 327-337. |
LIU Q Y, LEI J M, LIU Z, et al. γ?Ret?fRe transition model for compressible flow[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 327-337 (in Chinese). | |
19 | ZHOU L, ZHAO R, YUAN W. Application of improved k?ω?γ transition model to hypersonic complex configurations[J]. AIAA Journal, 2019, 57(5): 2214-2221. |
20 | ZHOU L, LI R F, HAO Z H, et al. Improved k?ω?γ model for crossflow-induced transition prediction in hypersonic flow[J]. International Journal of Heat and Mass Transfer, 2017, 115: 115-130. |
21 | ZHOU L, YAN C, HAO Z H, et al. Improved k?ω?γ model for hypersonic boundary layer transition prediction[J]. International Journal of Heat and Mass Transfer, 2016, 94: 380-389. |
22 | 周玲, 阎超, 孔维萱. 高超声速飞行器前体边界层强制转捩数值模拟[J]. 航空学报, 2014, 35(6): 1487-1495. |
ZHOU L, YAN C, KONG W X. Numerical simulation of forced boundary layer transition on hypersonic vehicle forebody[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6): 1487-1495 (in Chinese). | |
23 | 周玲, 阎超, 郝子辉, 等. 转捩模式与转捩准则预测高超声速边界层流动[J]. 航空学报, 2016, 37(4): 1092-1102. |
ZHOU L, YAN C, HAO Z H, et al. Transition model and transition criteria for hypersonic boundary layer flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1092-1102 (in Chinese). | |
24 | 周玲. 高超声速k?ω?γ转捩模式的改进及应用[D]. 北京:北京航空航天大学, 2016. |
ZHOU L. Improvements and applications of hypersonic k?ω?γ transition model[D]. Beijing: Beihang University, 2016 (in Chinese). | |
25 | 王亮, 周玲. 基于改进的k?ω?γ转捩模式预测高超声 速飞行器气动特性[J]. 空气动力学学报, 2021, 39(3): 51-61. |
WANG L, ZHOU L. Prediction of aerodynamic characteristics of hypersonic vehicle by improved k?ω?γ transition model[J]. Acta Aerodynamica Sinica, 2021, 39(3): 51-61 (in Chinese). | |
26 | ZHAO Y T, YAN C, LIU H K, et al. Assessment of laminar-turbulent transition models for Hypersonic Inflatable Aerodynamic Decelerator aeroshell in convection heat transfer[J]. International Journal of Heat and Mass Transfer, 2019, 132: 825-836. |
27 | 陈久芬,徐洋,蒋万秋,等. 升力体外形高超声速边界层转捩红外测量实验[J]. 实验流体力学, doi: 10.11729/syltlx20220030 . |
CHEN J F, XU Y, JIANG W Q,et al. Infrared thermogram measurement experiment of hypersonic boundary-layer transition of a lifting body[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220030 (in Chinese). |
/
〈 |
|
〉 |