“祝融号”火星车太阳敏感器设计与验证
收稿日期: 2024-06-28
修回日期: 2024-09-01
录用日期: 2024-10-18
网络出版日期: 2024-11-07
Sun sensor designed and qualified for “Zhurong” Mars rover
Received date: 2024-06-28
Revised date: 2024-09-01
Accepted date: 2024-10-18
Online published: 2024-11-07
张建福 , 李连升 , 陈建新 , 常晔 , 尹路 , 韩星 . “祝融号”火星车太阳敏感器设计与验证[J]. 航空学报, 2025 , 46(7) : 330882 -330882 . DOI: 10.7527/S1000-6893.2024.30882
When the Mars rover patrols the surface of Mars, it is necessary to measure the azimuth in the forward direction. The “Tianwen-1” Mars rover “Zhurong” has used a sun sensor to measure the azimuth of the rover. The solar intensity and irradiance on the Martian surface are low and complex, and dust is scattered in the Martian atmosphere and land surface. When the sun sensor is applied on the Martian surface, it will face a special environment of complex light intensity and dust. To ensure the safety of “Zhurong” Mars rover’s movement on the Mars surface, the sun sensor has been designed with adaptive light intensity and dust proof, and verification experiments have been carried out on the Earth surface. This sun sensor has been successfully applied to the “Tianwen-1” Mars rover “Zhurong”. The Mars rover has been working well in orbit throughout its entire lifespan, effectively ensuring the navigation needs of the rover.
Key words: “Tianwen-1”; “Zhurong”Mars rover; sun sensor; complex light intensity; dust
1 | 李建国. 月球车位姿确定技术研究[D]. 北京: 北京工业大学, 2007. |
LI J G. Study on localization & pose determination of lunar rover[D]. Beijing: Beijing University of Technology, 2007 (in Chinese). | |
2 | 邸凯昌. 勇气号和机遇号火星车定位方法评述[J]. 航天器工程, 2009, 18(5): 1-5. |
DI K C. A review of spirit and opportunity rover localization methods[J]. Space Engineering, 2009, 18(5): 1-5 (in Chinese). | |
3 | 崔平远, 高艾, 于正湜. 火星着陆自主导航方案研究进展[J]. 深空探测学报, 2014, 1(1): 18-27. |
CUI P Y, GAO A, YU Z S. Research progress of autonomous navigation scheme for Mars landing[J]. Journal of Deep Space Exploration, 2014, 1(1): 18-27 (in Chinese). | |
4 | 裴福俊, 严鸿, 朱明君. 太阳敏感器辅助的分布式EKF-SLAM火星车自主导航方法[J]. 深空探测学报, 2020, 7(2): 191-196. |
PEI F J, YAN H, ZHU M J. Autonomous navigation method for Mars rover using distributed EKF-SLAM assisted by Sun sensor[J]. Journal of Deep Space Exploration, 2020, 7(2): 191-196 (in Chinese). | |
5 | ZHAO Y N, WANG X L, LI Q S, et al. A high-accuracy autonomous navigation scheme for the Mars rover[J]. Acta Astronautica, 2019, 154: 18-32. |
6 | VOLPE R. Mars rover navigation results using Sun sensor heading determination[C]∥Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289). Piscataway: IEEE Press, 2002: 460-467. |
7 | ENRIGHT J, FURGALE P, BARFOOT T. Sun sensing for planetary rover navigation[C]∥2009 IEEE Aerospace Conference. Piscataway: IEEE Press, 2009. |
8 | FURGALE P, ENRIGHT J, BARFOOT T. Sun sensor navigation for planetary rovers: Theory and field testing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 1631-1647. |
9 | ZHAN Y H, CHEN S J, HE D H. High-precision heading determination based on the Sun for Mars rover[J]. Advances in Astronomy, 2018, 2018: 1493954. |
10 | EISENMAN A R, LIEBE C C, PEREZ R. Sun sensing on the Mars exploration rovers[C]∥Proceedings, IEEE Aerospace Conference. Piscataway: IEEE Press, 2003. |
11 | SODERBLOM J M, BELL J F III, JOHNSON J R, et al. Mars exploration rover navigation camera in-flight calibration[J]. Journal of Geophysical Research: Planets, 2008, 113(E6):s19. |
12 | GARVIN J B, WEITZ C, FIGUEROA O, et al. Introduction to the special section: Mars Exploration Rover mission and landing sites[J]. Journal of Geophysical Research: Planets, 2003, 108(E12): 8071. |
13 | MAKI J N, GRUEL D, MCKINNEY C, et al. The Mars 2020 engineering cameras and microphone on the perseverance rover: A next-generation imaging system for Mars exploration[J]. Space Science Reviews, 2020, 216(8): 137. |
14 | 欧阳自远, 肖福根. 火星及其环境[J]. 航天器环境工程, 2012, 29(6): 591-601. |
OUYANG Z Y, XIAO F G. The Mars and its environment[J]. Spacecraft Environment Engineering, 2012, 29(6): 591-601 (in Chinese). | |
15 | BANFIELD D, SPIGA A, NEWMAN C, et al. The atmosphere of Mars as observed by InSight[J]. Nature Geoscience, 2020, 13: 190-198. |
16 | LIEBE C C, ALEXANDER J W, SCHERR L. Sun imaging though the Martian atmosphere[C]∥2008 IEEE Aerospace Conference. Piscataway: IEEE Press, 2008. |
17 | EDMONDSON K M, JOSLIN D E, FETZER C M, et al. Simulation of the Mars surface solar spectra for optimized performance of triple-junction solar cells[C]∥19th SPRAT Conference. Washington, D.C.: NASA, 2005. |
18 | LAM G Q, BILLETS S, NORICK T, et al. Solar array design for the Mars InSight lander mission[C]∥14th International Energy Conversion Engineering Conference. Reston: AIAA, 2016. |
19 | STRAUSBERG M J, WANG H Q, RICHARDSON M I, et al. Observations of the initiation and evolution of the 2001 Mars global dust storm[J]. Journal of Geophysical Research: Planets, 2005, 110(E2): E02006. |
20 | RAMSEY S. NASA spacecraft detects aurora and mysterious dust cloud around Mars[EB/OL]. (2025-03-18)[2024-09-01]. . |
21 | HARRISON R G, BARTH E, ESPOSITO F, et al. Applications of electrified dust and dust devil electrodynamics to Martian atmospheric electricity[J]. Space Science Reviews, 2016, 203(1): 299-345. |
22 | 国家航天局.天问一号着陆过程两器分离和落火影像发布[EB/OL]. (2021-05-19)[2024-08-20]. . |
China National Space Administration. Images of Tianwen-1’s landing process, including separation and Mars descent, released [EB/OL]. (2021-05-19) [2024-08-20]. (in Chinese). |
/
〈 |
|
〉 |