氢能飞行器技术专栏

氢能源与纯电民机航程分析

  • 孔垂欢 ,
  • 范周伟 ,
  • 戴佳骅 ,
  • 徐南波 ,
  • 谭兆光 ,
  • 潘立军
展开
  • 中国商用飞机有限责任公司 上海飞机设计研究院,上海 201210
.E-mail: panlijun@comac.cc

收稿日期: 2024-08-22

  修回日期: 2024-09-02

  录用日期: 2024-10-30

  网络出版日期: 2024-11-04

Range analysis of civil aircraft using hydrogen energy and electricity

  • Chuihuan KONG ,
  • Zhouwei FAN ,
  • Jiahua DAI ,
  • Nanbo XU ,
  • Zhaoguang TAN ,
  • Lijun PAN
Expand
  • Shanghai Aircraft Design and Research Institute,Commercial Aircraft Corporation of China Ltd. ,Shanghai 201210,China
E-mail: panlijun@comac.cc

Received date: 2024-08-22

  Revised date: 2024-09-02

  Accepted date: 2024-10-30

  Online published: 2024-11-04

摘要

随着碳排放政策日趋严格,航空绿色出行已成为民机设计新目标之一,传统能源的民航发动机效率提升空间有限,很难大幅减少碳排放量,采用新能源的设计方案成为当下研究的热点。给出了氢涡扇、氢燃料电池、纯电飞机航程的影响因素并加以分析。氢涡扇飞机航程随着储氢系统质量占比、储氢质量分数增大而增大,在当前储氢质量分数为15%的条件下,液氢涡扇飞机(升阻比为17,使用空机质量占比为0.6)最大航程能到3 800 km;在储氢质量分数为32%~36%的条件下,液氢涡扇飞机将与燃油飞机具有同等航程能力。氢燃料电池飞机航程随着氢燃料电池功率密度增大而增大,航程随着飞行速度增大而减小,在当前储氢质量分数为15%、氢燃料电池功率密度为2 kW/kg的条件下,氢燃料电池支线和窄体飞机(升阻比为17,使用空机质量占比为0.6)最大航程能到4 000 km,但难以实现高速飞行;当氢燃料电池功率密度增加至3 kW/kg时,飞机将具备巡航马赫数为0.75的飞行能力。纯电飞机航程随着升阻比、电池能量密度、电池质量占比增大而线性增大,在当前电池能量密度为200 W·h/kg的条件下,纯电通航飞机(升阻比取较优值18,使用空机重量占比为0.6)最大航程能到200~300 km;在电池能量密度为500 W·h/kg的条件下,最大航程能到700 km。

本文引用格式

孔垂欢 , 范周伟 , 戴佳骅 , 徐南波 , 谭兆光 , 潘立军 . 氢能源与纯电民机航程分析[J]. 航空学报, 2025 , 46(9) : 331087 -331087 . DOI: 10.7527/S1000-6893.2024.31087

Abstract

With the increasingly strict carbon emission policy, green air travel has become one of the new goals of civil aircraft design. The efficiency of civil aircraft engines with traditional energy is limited, making it difficult to significantly reduce carbon emissions. Therefore, design schemes of new energy have become a hot research topic. The factors affecting the range of hydrogen turbofan, hydrogen fuel cell and fully electric aircraft are summarized. The range of hydrogen turbofan aircraft (lift-drag ratio is 17, operating empty weight fraction is 0.6) increases with the increase of hydrogen tank system mass fraction and hydrogen storage mass fraction. Under the current hydrogen storage mass fraction of 15%, the maximum range of hydrogen turbofan civil aircraft can reach 3 800 km. When the hydrogen storage mass fraction reaches 32%–36%, the hydrogen turbofan civil aircraft will achieve the same range as the fuel aircraft. The range of hydrogen fuel cell aircraft (lift-drag ratio is 17, operating empty weight fraction is 0.6) increases with the increase of hydrogen fuel cell power density, and the range decreases with the increase of flight speed.Under the current conditions of hydrogen storage mass fraction of 15% and hydrogen fuel cell power density of 2 kW/kg, the maximum range of hydrogen fuel cell regional and narrow-body aircraft can reach 4 000 km, though achieving high-speed flight remains challenging. When the hydrogen fuel cell power density increases to 3 kW/kg, the aircraft will be able to cruise at Mach number 0.75.The range of fully electric aircraft (good lift-drag ratio is 18, operating empty weight fraction is 0.6) increases linearly with the increase of lift-drag ratio, battery energy density and battery mass fraction. Under the current battery energy density of 200 W·h/kg, the maximum range of the fully electric aircraft can reach 200–300 km. When the battery energy density reaches 500 W·h/kg, the maximum range can reach 700 km.

参考文献

1 纪宇晗, 孙侠生, 俞笑, 等. 双碳战略下的新能源航空发展展望[J]. 航空科学技术202233(12): 1-11.
  JI Y H, SUN X S, YU X, et al. Development prospect of new energy aviation under carbon peaking and carbon neutrality goals[J]. Aeronautical Science & Technology202233(12): 1-11 (in Chinese).
2 BRAVO-MOSQUERA P D, CATALANO F M, ZINGG D W. Unconventional aircraft for civil aviation: A review of concepts and design methodologies[J]. Progress in Aerospace Sciences2022131: 100813.
3 孔垂欢, 吴大卫, 谭兆光, 等. 三翼面验证机纯电方案设计[J]. 航空学报202445(6): 629618.
  KONG C H, WU D W, TAN Z G, et al. Design of fully electric scheme for three-surface verification aircraft[J]. Acta Aeronautica et Astronautica Sinica202445(6): 629618 (in Chinese).
4 FELDER J L. NASA electric propulsion system studies: GRC-E-DAA-TN28410?[R]. Washington, D.C.: NASA, 2015.
5 王妙香. NASA亚声速大型飞机电推进技术研究综述[J]. 航空科学技术201930(11): 22-29.
  WANG M X. Overview of NASA electrified aircraft propulsion research for large subsonic transports[J]. Aeronautical Science & Technology201930(11): 22-29 (in Chinese).
6 JANSEN R, BOWMAN C, JANKOVSKY A, et al. Overview of NASA electrified aircraft propulsion (EAP) research for large subsonic transports: AIAA-2017-4701[R]. Reston: AIAA, 2017.
7 WELSTEAD J, FELDER J L. Conceptual design of a single-aisle turboelectric commercial transport with fuselage boundary layer ingestion: AIAA-2016-1027[R]. Reston: AIAA, 2016
8 IATA. Net zero roadmap[EB/OL]. [2024-08-22]. .
9 段辰龙, 李岩, 徐悦, 等. 电动飞机发展关键技术与总体性能关联性分析[J]. 飞行力学202139(2): 39-44.
  DUAN C L, LI Y, XU Y, et al. Analysis on the relationship of key technology for electric aircraft development and overall performance[J]. Flight Dynamics202139(2): 39-44 (in Chinese).
10 COLOZZA A J, KOHOUT L. Hydrogen storage for aircraft applications overview: NASA/CR-2002-211867 [R]. Washington, D.C.: NASA, 2002.
11 FAN L X, TU Z K, CHAN S H. Recent development of hydrogen and fuel cell technologies: A review[J]. Energy Reports20217: 8421-8446.
12 ADLER E J, MARTINS J R R A. Hydrogen-powered aircraft: Fundamental concepts, key technologies, and environmental impacts[J]. Progress in Aerospace Sciences2023141: 100922.
13 LIU L. Model-based technology roadmapping of sustainable aviation technologies[D]. Cambridge: Massachusetts Institute of Technology, 2023.
14 Airbus. Airbus reveals new zero-emission concept aircraft[EB/OL]. (2020-09-21) [2024-08-22]. .
15 German Aerospace Center. Zero emission aviation: German aviation research white paper [EB/OL]. [2024-08-22]. .
16 SOSOUNOV V, ORLOV V. Experimental turbofan using liquid hydrogen and liquid natural gas as fuel: AIAA-1990-2421[R]. Reston: AIAA, 1990.
17 BALLI O, OZBEK E, EKICI S, et al. Thermodynamic comparison of TF33 turbofan engine fueled by hydrogen in benchmark with kerosene?[J]. Fuel2021306: 121686.
18 CORCHERO G, MONTA?éS J L. An approach to the use of hydrogen for commercial aircraft engines[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2005219(1): 35-44.
19 张扬军, 彭杰, 钱煜平, 等. 氢能航空的关键技术与挑战[J]. 航空动力2021(1): 20-23.
  ZHANG Y J, PENG J, QIAN Y P, et al. Key technologies and challenges of hydrogen powered aviation?[J]. Aerospace Power2021(1): 20-23 (in Chinese).
20 JENKINSON L R, SIMPKIN P, RHODES D. Civil jet aircraft design[M]. Reston: AIAA, 1999: 114-175.
21 陈迎春, 宋文滨, 刘洪. 民用飞机总体设计[M]. 上海: 上海交通大学出版社, 2010: 29-32.
  CHEN Y C, SONG W B, LIU H. Civil aircraft design[M]. Shanghai: Shanghai Jiao Tong University Press, 2010: 29-32 (in Chinese).
22 MUKHOPADHAYA J, RUTHERFORD D. Performance analysis of evolutionary hydrogen-powered aircraft[EB/OL]. (2022-01-26) [2024-08-22]. .
23 MUKHOPADHAYA J, GRAVER B. Performance analysis of regional electric aircraft [EB/OL]. [2024-08-22]. .
24 GNADT A R, SPETH R L, SABNIS J S, et al. Technical and environmental assessment of all-electric 180-passenger commercial aircraft[J]. Progress in Aerospace Sciences2019105: 1-30.
25 PALAIA G, SALEM K ABU, CARRERA E. Preliminary performance analysis of medium-range liquid hydrogen-powered box-wing aircraft?[J]. Aerospace202411(5): 379.
26 LEE J J, LUKACHKO S P, WAITZ I A, et al. Historical and future trends in aircraft performance, cost, and emissions[J]. Annual Review of Energy and the Environment200126: 167-200.
27 YOUNG T M. Performance of the jet transport airplane: Analysis methods, flight operations, and regulations[M]. Hoboken: John Wiley & Sons, Inc.,2018: 410-430.
28 Airbus S.A.S. A320Aircraft characteristics airport and maintenance planning[M]. Toulouse: Airbus S.A.S.,2016: 28-147.
29 Boeing Commercial Airplanes.737 airplane characteristics for airport planning: D6-58325-6[R]. Seattle: Boeing Commercial Airplanes, 2013: 23-96.
30 OBERT E. Aerodynamic design of transport aircraft[M]. IOS press, 2009: 224-264.
31 陈名乾. 民用飞机商载航程图解析方程的建立及应用[J]. 航空学报201940(2): 522407.
  CHEN M Q. Development and application of the analytic equation of the payload-range diagram for commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica201940(2): 522407 (in Chinese).
32 STAACK I, SOBRON A, KRUS P. The potential of full-electric aircraft for civil transportation: From the Breguet range equation to operational aspects[J]. CEAS Aeronautical Journal202112(4): 803-819.
文章导航

/