随着碳排放政策日趋严格,航空绿色出行成为民机设计新目标之一,传统能源的民航发动机效率提升空间有限,很难大幅减少碳排放,采用新能源的设计方案,成为当下研究的热点。本文给出了氢涡扇、氢燃料电池、锂电飞机航程的影响因素分析。纯电飞机航程随着升阻比、电池能量密度、电池质量系数增大而线性增大;在当前电池能量密度200w·h/kg条件下,纯电通航飞机有效航程最大能到200~300km,电池能量密度500w·h/kg,最大航程能到720km;液氢涡扇飞机航程随着储氢系统重量占比、储氢质量分数增大而增大,在当前储氢质量分数15%条件下,纯氢干线飞机最大航程能到3800km。储氢质量分数达到32%~36%,液氢涡扇飞机将与燃油飞机具有同等航程能力;氢燃料电池飞机航程随着氢燃料电池功率密度增大而增大,航程随着飞行速度增大而减小。在当前储氢质量分数15%、氢燃料电池功率密度2kw/kg条件下,氢燃料电池支线和窄体飞机最大航程能到4000km,但难以实现高速飞行。当燃料电池功率密度增加至3kw/kg,飞机将具备0.75巡航马赫数的飞行能力。
With the increasingly strict carbon emission policy, green air travel has become one of the new goals of civil aircraft design. The improvement of aerodynamic efficiency and structural efficiency of the traditional layout of civil aircraft is limited, so it is difficult to achieve greater carbon reduction. The design scheme of new energy has become a hot spot of current research. This paper summarizes the factors affecting the range of hydrogen turbofan, hydrogen fuel cell and lithium electric aircraft. The range of pure electric aircraft increases linearly with the increase of lift-to-drag ratio, battery energy density and battery weight fraction.At present, the energy density of the battery is about 200W·h / kg, and the maximum range of the electric aircraft can reach 200 ~ 300km.When the battery energy density reaches 500W·h / kg, the maximum range can reach 720km. The range of liquid hydrogen turbofan aircraft increases with the increase of hydrogen tank system weight fraction and hydrogen storage fraction. Under the current hydrogen storage fraction of 15 %, the maximum range of liquid hydrogen jet aircraft can reach 3800 km. When the hydrogen storage fraction reaches 32 % ~ 36 %, the liquid hydrogen turbofan aircraft will have the same range as the fuel aircraft. The range of hydrogen fuel cell aircraft increases with the increase of hydrogen fuel cell power density, and the range decreases with the increase of flight speed.Under the current conditions of hydrogen storage fraction of 15 % and hydrogen fuel cell power density of 2kw / kg, the maximum range of hydrogen fuel cell regional and narrow-body aircraft can reach 4000 km, but it is difficult to achieve high-speed flight. When the fuel cell power density increases to 3kw / kg,the aircraft will be able to cruise at Mach 0.75 .
[1]纪宇晗, 孙侠生, 俞笑, 等.双碳战略下的新能源航空发展展望[J].航空科学技术, 2022, 33(12):1-11
JI Y H, SUN X S, YU X, et al.Development prospect of new energy aviation under carbon peaking and carbon neutrality goals[J].Aeronautical Science & Technology, 2022, 33(12):1-11
[2]BRAVO-MOSQUERA P D, CATALANO F M, ZINGG D W.Unconventional aircraft for civil aviation: A review of concepts and design methodologies[J]. Progress in Aerospace Sciences, 2022, 131: 100813.
[4]孔垂欢, 吴大卫, 谭兆光, 等.三翼面验证机纯电方案设计[J].航空学报, 2024, 45(06):110-120
[5]KONG C H, WU D W, TAN Z G, et al.Design of fully electric scheme for three-surface verification aircraft[J].Acta Aeronautica et Astronautica Sinica, 2024, 45(06):110-120
[6]FELDER J L.NASA electric propulsion system studies: GRC-E-DAA-TN28410[R]. Cleveland, OH: NASA, 2015.
[7]王妙香.亚声速大型飞机电推进技术研究综述[J].航空科学技术, 2019, 30(11):22-29
[8]WANG M X.Review of NASA subsonic large aircraft electric propulsion technology[J].Aeronautical Science & Technology, 2019, 30(11):22-29
[9]JANSEN R, BOWMAN C, JANKOVSKY A, et al.Overview of NASA electrified aircraft propulsion (EAP) research for large subsonic transports[C]//53rd AIAA/SAE/ASEE joint propulsion conference. Atlanta, GA: AIAA, 2017: 4701.
[10]WELSTEAD J, FELDER J L.Conceptual design of a single-aisle turboelectric commercial transport with fuselage boundary layer ingestion[C]//54th AIAA aerospace sciences meeting. San Diego, California: AIAA, 2016: 1027.
[11]IATA.Aircraft Technology Net Zero Roadmap[EB/OL]. (2023-06-02)[2023-9-15]. https://www.iata.org/en/programs/environment/roadmaps/.
[12]段辰龙, 李岩, 徐悦, 等.电动飞机发展关键技术与总体性能关联性分析[J].飞行力学, 2021, 39(02):39-44
[13]DUAN C L, LI Y, XU Y, et al.Analysis on the relationship of key technology for electric aircraft development and overall performance[J].Flight Dynamics, 2021, 39(02):39-44
[14]COLOZZA A J, KOHOUT L.Hydrogen storage for aircraft applications overview: NASA/CR-2002-211867 [R]. Cleveland, OH: NASA, 2002.
[15]FAN L, TU Z, CHAN S H.Recent development of hydrogen and fuel cell technologies: A review[J]. Energy Reports, 2021, 7: 8421-8446.
[16]ADLER E J, MARTINS J R R A.Hydrogen-powered aircraft: Fundamental concepts, key technologies, and environmental impacts[J]. Progress in Aerospace Sciences, 2023, 141: 100922.
[17]LIU L.Model-Based Technology Roadmapping of Sustainable Aviation Technologies[D]. Massachusetts Institute of Technology, 2023: 78-81.
[18]AIRBUS.Airbus reveals new zero-emission concept aircraft[EB/OL]. (2020-09-21) [2023-07-30]. https://www.airbus.com/en/newsroom/press-releases/2020-09-airbus-reveals-new-zero-emission-concept-aircraft.
[19]GERMAN AEROSPACE CENTER.Zero Emission Aviation: German aviation research white paper[EB/OL]. (2020-11) [2023-07-30]. https://www.dlr.de/en/media/publications/brochures/2020/white-paper-dlr-bdli-zero-2020-en.
[20]SOSOUNOV V A, ORLOV V N.Experimental turbofan using liquid hydrogen and liquid natural gas as fuel[C]//26th Joint Propulsion Conference. Orlando, FL: AIAA, 1990: 2421.
[21]BALLI O, OZBEK E, EKICI S, et al.Thermodynamic comparison of TF33 turbofan engine fueled by hydrogen in benchmark with kerosene[J]. Fuel, 2021, 306: 121686.
[22]CORCHERO G, MONTANES J L.An approach to the use of hydrogen for commercial aircraft engines[J].Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2005, 219(1):35-44
[23]张扬军, 彭杰, 钱煜平, 等.氢能航空的关键技术与挑战[J].航空动力, 2020, 3(1):20-23
[24]ZHANG Y J, PENG J, QIAN Y P, et al.Key technologies and challenges of hydrogen aviation[J].Aerospace Power, 2020, 3(1):20-23
[25]JENKINSON L R, SIMPKIN P, RHODES D.Civil jet aircraft design[M]. Reston, VA: American Institute of Aeronautics and Astronautics, 1999: 114-175.
[26]陈迎春.民用飞机总体设计[M]. 上海: 上海交通大学出版社, 2010: 29-32.
[27]CHEN Y C.Civil aircraft design[M]. Shanghai: Shanghai Jiao Tong University Press, 2010: 29-32(in Chinese).
[28]YOUNG T M.Performance of the Jet Transport Airplane: Analysis Methods, Flight Operations, and Regulations[M]. John Wiley & Sons, 2017.
[29]黄俊, 杨凤田.新能源电动飞机发展与挑战[J].航空学报, 2016, 37(1):57-68
[30]HUANG J, YANG F T.Development and challenges of new energy electric aircraft[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(1):57-68
[31]AIRBUS.A320 aircraft characteristics airport and maintenance planning[EB/OL]. (2020-12-01) [2024-07-30]. https://www.airbus.com/sites/g/files/jlcbta136/files/2021-11/Airbus-Commercial-Aircraft-AC-A320.pdf.
[32]STAACK I, SOBRON A, KRUS P.The potential of full-electric aircraft for civil transportation: from the Breguet range equation to operational aspects[J].CEAS Aeronautical Journal, 2021, 12(4):803-819