[1] 邓景辉. 电动垂直起降飞行器的技术现状与发展[J]. 航空学报: 2024, 45(5): 529937.
Deng J H. Technicalstatus and development of electric vertical take-off and landing aircraft[J]. Acta Aeronauti-ca et Astronautica Sinica,2024,45(5):529937 (in Chinese).
[2] Uber Elevate eCRM-001. Available online: https://evtol.news/aircraft/uber-elevate- ecrm-001/ ,2020.
[3] 朱炳杰, 杨希祥, 宗建安, 等. 分布式混合电推进飞行 器技术[J]. 航空学报, 2022, 43(07): 025556.
ZHU B J, YANG X X, ZONG J A, et al. Review of dis-tributed hybrid electric propulsion aircraft technolo-gy[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 025556 (in Chinese).
[4] CHAUHAN S S, MARTINS J R. Tilt-wing eVTOL takeoff trajectory optimization[J]. Journal of aircraft, 2020, 57(1): 93-112.
[5] JOHNSON W, YAMAUCHI G, DERBY M, et al. Wind tunnel measurements and calculations of aerodynamic interactions between tiltrotor aircraft[C]. 41st Aerospace Sciences Meeting and Exhibit, 2003: 47.
[6] MATUSKA D, DALE A, LORBER P. Wind tunnel test of a variable-diameter tiltrotor (VDTR) model[R]. 1994.
[7] FELKER F F, LIGHT J S. Rotor/wing aerodynamic interactions in hover[C]. Annual Forum of the American Helicopter Society, 1986.
[8] DARABI A, WYGNANSKI I. The Rotor Wake Above a Tilt-Rotor Airplane Model in Hover[C]. 33rd AIAA Flu-id Dynamics Conference and Exhibit, 2003: 3596.
[9] 张铮, 陈仁良. 倾转旋翼机旋翼/机翼气动干扰理论与 试验[J]. 航空学报, 2017, 38(03): 31-39.
ZHANG Z, CHEN R L. Theory and test of rotor wing aero interaction in tilt-rotor aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(03): 31-39 (in Chi-nese).
[10] HUANG Q, HE G, JIA J, et al. Numerical Simulation on Aerodynamic Characteristics of Transition Section of Tilt-Wing Aircraft[J]. Aerospace, 2024, 11(4): 283.
[11] 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的 机翼气动优化设计[J]. 航空学报, 2014, 35(11): 2910- 2920.
XU J K , BAI J Q, HUANG J T, et al. Aerodynamic Optimization Design of Wing Under the Interaction of Propeller Slipstream[J]. Acta Aeronautica et Astronauti-ca Sinica, 2014, 35(11): 2910-2920 (in Chinese).
[12] THOUAULT N, BREITSAMTER C, ADAMS N A. Numerical and experimental analysis of a generic fan-in-wing configuration[J]. Journal of Aircraft, 2009, 46(2): 656- 666.
[13] LIU T L, PAN K C. Application of the sliding mesh technique for helicopter rotor flow simulation[J]. Jour-nal of Aeronautics, Astronautics and Aviation, 2012, 44(3): 201-209.
[14] WANG H, ZHAO Q, ZHAO G, et al. Analyses on Aer-odynamic Interactions of Quad-Tiltrotor Aircraft with Variable RPM and Diameter[C]. Proceedings of the 2021 Asia-Pacific International Symposium on Aero-space Technology (APISAT 2021), 2021.
[15] WU Z, LI C, CAO Y. Numerical Simulation of Rotor–Wing Transient Interaction for a Tiltrotor in the Transi-tion Mode[J]. Mathematics, 2019, 7(2): 116.
[16] POTSDAM M, YEO H, JOHNSON W. Rotor Airloads Prediction Using Loose Aerodynamic/Structural Cou-pling[J]. Journal of Aircraft, 2006, 43(3): 732-742.
[17] GAONKAR G H, PETERS D A. Review of Dynamic Inflow Modeling for Rotorcraft Flight Dynamics[C]. 27th Structures, Structural Dynamics and Materials, 1988.
[18] GAONKAR G H, PETERS D A. Effectiveness of Cur-rent Dynamic Inflow Models in Hover and Forward Flight[J]. Journal of the American Helicopter Society, 1986, 31(2): 47-57.
[19] PETERS D A, MORILLO J A, NELSON A M. New Developments in Dynamic Wake Modeling for Dynam-ics Applications[J]. Journal of the American Helicopter Society, 2003, 48(2): 120-127.
[20] WANG Y R, PETERS D A. The Lifting Rotor Inflow Mode Shapes and Blade Flapping Vibration System eig-en-analysis[J]. Computer Methods in Applied Mechan-ics & Engineerin, 1996, 134(s 1–2): 91-105.
[21] KELLER J D. An Investigation of Helicopter Dynamic Coupling Using an Analytical Model[J]. Journal of the American Helicopter Society, 1996, 41(4): 322-330.
[22] PETERS D A, BOYD D D, HE C J. Finite-state-induced flow model for rotors in hover and forward flight [J]. Journal of the American Helicopter Society, 1989, 34(4): 5-17.
[23] KOCUREK J D, TANGLER J L. A Prescribed Wake Lifting Surface Hover Performance Analysis[J]. Journal of the American Helicopter Society, 1977, 22(1): 24-35(12).
[24] QUACKENBUSH T R, BLISS D B, ONG C C, et al. Free wake analysis of hover performance using a new influence coefficient method[R]. NASA, 1990.
[25] 徐国华. 应用自由尾迹分析的新型桨尖旋翼气动特性 研究[D]. 南京: 南京航空航天大学, 1996.
XU G H. Research on the aerodynamic characteristics of the new blade tip rotor using free wake analysis[D]. Nanjing: Nanjing University of Aeronautics and Astro-nautics, 1996 (in Chinese).
[26] KRASNY R. Computation of vortex sheet roll-up in the Trefftz plane[J]. Journal of Fluid Mechanics, 1987, 184: 123-155.
[27] LEONARD A. Vortex methods for flow simulation[J]. Journal of Computational Physics, 1980, 37(3): 289-335.
[28] CHATELAIN P, BRICTEUX L, BACKAERT S, et al. Vortex particle-mesh methods with immersed lifting lines applied to the LES of wind turbine wakes[J]. Jour-nal of Computational Physics. in preparation, 2011.
[29] 谭剑锋, 王浩文, 吴超, 等. 基于非定常面元/黏性涡粒 子混合法的旋翼/平尾非定常气动干扰[J]. 航空学报, 2014, 35(03): 643-656.
TAN J F, WANG H W, WU C, et al. Rotor/Empennage Unsteady Aerodynamic Interaction with Unsteady Pan-el/Viscous Vortex Particle Hybrid Method[J]. Acta Aer-onautica et Astronautica Sinica, 2014, 35(03): 643-656 (in Chinese).
[30] 王红波, 祝小平, 周洲, 等. 基于非定常面元/黏性涡粒 子法的低雷诺数滑流气动干扰[J]. 航空学报, 2017, 38(04): 101-111.
WANG H B, ZHU X P, ZHOU Z, et al. Aerodynamic interactions at low Reynolds number slipstream with unsteady panel/ viscous vortex particle method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(04): 101- 111 (in Chinese).
[31] 徐川, 刘长文, 鲁可, 等. 基于黏性涡粒子尾迹模型的 高速直升机配平特性分析[J]. 航空科学技术, 2023, 34(05): 38-45.
XU C, LIU C W, LU K, et al. Trim Characteristics Analysis on High-speed Helicopter Using Viscous Vor-tex Particles Wake Model[J]. Aeronautical Science & Technology, 2023, 34(05): 38-45 (in Chinese).
[32] Katz J, Plotkin A. Low-speed aerodynamics[M]. Cam-bridge university press, 2001.
[33] ZHU W G, MORANDINI M, LI S. Viscous vortex par-ticle method coupling with computational structural dy-namics for rotor comprehensive analysis[J]. Applied Sciences, 2021, 11(7): 3149.
[34] HESS J L, SMITH A M O. Calculation of nonlifting potential flow about arbitrary three-dimensional bod-ies[J]. Journal of ship research, 1964, 8(04): 22-44.
[35] HE C, ZHAO J. Modeling rotor wake dynamics with viscous vortex particle method[J]. AIAA journal, 2009, 47(4): 902-915.
[36] 王有江. 螺旋桨水动力性能及流场分析的面元—涡粒 子耦合算法研究[D]. 西安:西北工业大学, 2017.
WANG Y J. Study on the boundary element-vortex par-ticle couple method for the simulation of marine propel-ler flow[D]. Xi’an: Northwestern Polytechnical Univer-sity, 2017 (in Chinese).
[37] HESS J L. Calculation of potential flow about arbitrary three-dimensional lifting bodies, final technical re-port[R]. MDCJ5679-01, 1972.
[38] PERDOLT D. Efficient aerodynamic modeling process for a tilt-wing eVTOL using a mid-fidelity computation-al tool[D]. Technical University of Munich, 2022.
[39] WANG Y J, ABDEL MAKSOUD M, SONG B W. Sim-ulating marine propellers with vortex particle method [J]. Physics of Fluids, 2017, 29(1): 017103.
[40] 刘乾, 刘汉儒, 李家辉, 等. 基于面元-涡粒子法的螺旋 桨气动特性及噪声研究[J]. 西北工业大学学报, 2022, 40(04): 778-786.
LIU Q, LIU H R, LI J H, et al. Research on aerodyna-mies and acroacoustics of propeller based on panel-vortex particle method[J]. Journal of Northwestern Polytechnical University, 2022, 40(4): 778-786 (in Chi-nese).
[41] CARADONNA F X, TUNG C. Experimental and ana-lytical studies of a model helicopter rotor in hover[C]. European rotorcraft and powered lift aircraft forum, 1981.
[42] BRAND A, MCMAHON H, KOMERATH N. Surface pressure measurements on a body subject to vortex wake interaction[J]. AIAA journal, 1989, 27(5): 569-574.
[43] DOERFFER P, SZULC O. Numerical simulation of model helicopter rotor in hover[J]. Task Quarterly Sci-entific Bulletin of Academic Computer Centre in Gdansk, 2008, 12(3-4): 227-236.
[44] 史勇杰. 基于CFD方法的直升机旋翼桨—干扰气动和噪声特性研究[D]. 南京: 南京航空航天大学, 2012.
SHI Y J. Research on Aerodynamic and Acoustic Char-acteristics of Helicopter Rotor Blade-Vortex Interaction by CFD Method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
[45] FELKER F F, SIGNOR D B, YOUNG L A, et al. Per-formance and loads data from a hover test of a 0.658-scale V-22 rotor and wing[R]. 1987.
[46] 陈皓. 倾转旋翼机过渡模式下非定常气动力数值模拟 [D]. 南京: 南京航空航天大学, 2018.
CHEN H. Numerical Study on Unsteady Aerodynamic Force of a Tilt-rotor Aircraft in Conversion Mode[D]. Nanjing: Nanjing University of Aeronautics and Astro-nautics, 2018 (in Chinese).
[47] CHOI S W, KIM J M. Investigation into the Aerody-namic Performance of the Tiltrotor Unmanned Aerial Vehicle Proprotor[J]. Journal of aircraft, 2010, 47(3): 1083-1086.
[48] ZHANG Y, YE L, YANG S. Numerical study on flow fields and aerodynamics of tilt rotor aircraft in conver-sion mode based on embedded grid and actuator mod-el[J]. Chinese journal of aeronautics, 2015, 28(1): 93-102.
[49] BRAMWELL A R S, BALMFORD D, DONE G. Bramwell's helicopter dynamics[M]. Elsevier, 2001.