基于神经网络的S弯喷管-涡扇发动机维度缩放研究

  • 王承熙 ,
  • 周莉 ,
  • 孙啸林 ,
  • 张晓博 ,
  • 王占学
展开
  • 1. 西北工业大学动力与能源学院
    2. 中国民用航空飞行学院,航空工程学院
    3. Northwestern Polytechnical University
    4. 西北工业大学

收稿日期: 2024-06-04

  修回日期: 2024-10-27

  网络出版日期: 2024-10-29

基金资助

国家自然科学基金;国家自然科学基金;陕西省杰出青年科学基金项目;国家科技重大专项;航空发动机及燃气轮机基础科学中心项目;航空发动机及燃气轮机基础科学中心项目;中央高校基本科研业务费专项资金

Neural Networks-based Study on Numerical Zooming between Serpentine Nozzle and Turbofan

  • WANG Cheng-Xi ,
  • ZHOU Li ,
  • SUN Xiao-Lin ,
  • ZHANG Xiao-Bo ,
  • WANG Zhan-Xue
Expand

Received date: 2024-06-04

  Revised date: 2024-10-27

  Online published: 2024-10-29

Supported by

National Natural Science Foundation of China;National Natural Science Foundation of China;Funds for Distinguished Young Scholars of Shaanxi Province;National Science and Technology Major Project;Science Center for Gas Turbine Project;Science Center for Gas Turbine Project;Fundamental Research Funds for the Central Universities

摘要

S弯喷管内部流动复杂,气动性能影响参数多,传统的基于部件的发动机零维模型无法评估S弯喷管对整机产生的气动性能影响。本文使用反向传播(Back Propagation,BP)神经网络建立了S弯喷管高可信度性能预测模型,并将其与涡扇发动机零维模型耦合,研究了基准S弯喷管对发动机速度、高度特性和部件特性的影响,以及在不同几何参数下喷管和发动机性能的差异。结果表明,相较于轴对称喷管,装配S弯喷管的发动机性能下降,在海平面静止状态时,S弯喷管使发动机推力减小4.50%,耗油率增加4.75%;其风扇涵道比在海平面最大缩小0.33%,喘振裕度减少;而高度为12km时,风扇涵道比最大增加0.28%,喘振裕度增加;喷管在不同高度下对混合室内外涵的节流效果的差异导致了上述风扇工作特性变化趋势的不同。喷管长径比从2.2增加至3改善了喷管性能,其推力系数与流量系数分别增加8.0%和4.8%。本文建立的S弯喷管-发动机多维度耦合模型能够有效地评估装配不同几何参数的S弯喷管后发动机性能和部件特性的变化。

本文引用格式

王承熙 , 周莉 , 孙啸林 , 张晓博 , 王占学 . 基于神经网络的S弯喷管-涡扇发动机维度缩放研究[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.30791

Abstract

The internal flow of the serpentine nozzle is complex, with numerous parameters affecting its aerodynamic performance. Traditional component-based zero-dimensional engine models cannot accurately assess the aerodynamic performance impact of the serpentine nozzle on the overall engine. In this paper, a high-fidelity performance prediction model for serpentine nozzles is established using the back propagation (BP) neural network and coupled with a zero-dimensional turbofan engine model. This integrated approach is employed to investigate the influence of the baseline nozzle on engine speed, altitude characteristics, and component behaviors, as well as the differences in nozzle and engine performance under various geometric parameters. The results indicate that, compared to axisymmetric nozzles, engine equipped with the serpentine nozzle experienced a decline in performance. Specifically, at sea-level static conditions, the engine's thrust decreases by 4.50%, while the specific fuel consumption increases by 4.75%. The fan bypass ratio decreased by a maximum of 0.33% at sea level, accompanied by a reduction in surge margin. Conversely, at an altitude of 12 km, the fan bypass ratio increased by a maximum of 0.28%, and the surge margin increased. These varying trends in fan operating characteristics were attributed to the differences in throttling effects of the serpentine nozzle on the core and bypass of mixing chamber at different altitudes. Additionally, increasing the length-to-diameter ratio of the serpentine nozzle from 2.2 to 3 enhanced its performance, resulting in an 8.0% increase in thrust coefficient and a 4.8% increase in discharge coefficient.The multi-dimensional coupling model between serpentine nozzle and engine established in this study can effectively evaluate the changes in engine performance and component characteristics following the installation of serpentine nozzles of varying geometric parameters.

参考文献

[1]航空发动机设计手册: 进排气装置[M]. 北京: 航空工业出版社, 2002: 276.
Aeroengine design manual: inlet and exhaust system [M]. Beijing: Aviation Industry Press, 2002 (in Chinese): 276.
[2] 高翔. 飞行器/排气系统红外辐射及电磁散射特性数值研究[D]. 西安: 西北工业大学, 2017: 4-6.
GAO X. Investigation on the infrared radiation and radar scattering characteristics of aircraft and engine[D] Xi’an: Northwestern Polytechnical University, 2017: 4-6 (in Chinese).
[3] 是介,周莉,史经纬等.复杂来流条件下设计参数对 S 弯喷管红外辐射特征影响[J].航空学报, 2024, 45:530082.
SHI J, ZHOU L, SHI J W, et al. Influence of design parameters on the infrared radiation characteristics of serpentine nozzles under complex flow conditions[J]. Acta Aeronautica et Astronautica Sinica, 2024,45: 530082(in Chinese).
[4] M.C. Gridley, S.H. Walker. Inlet and nozzle technology for 21st century fighter aircraft[R]. ASME Paper,1996-GT-244, 1996.
[5] MAHULIKAR S P, SONAWANE H R, RAO G A. Infrared signature studies of aerospace vehicles[J]. Progress in Aerospace Sciences, 2007, 43(7): 218-245.
[6] STACK C M, GAITONDE D V. Shear Layer Dynamics in a Supersonic Rectangular Multistream Nozzle with an Aft-Deck[J]. AIAA Journal, 2018, 56(11): 1-13.
[7] J.D Deaton, R.V. Grandhi. Thermal-structural analysis of engine exhaust-washed structures[R]. AIAA-2010-9236, 2010.
[8] D.S. Crowe, Jr. C.L. Martin. Effect of geometry on exit temperature from serpentine exhaust nozzles[R], AIAA-2015-1670, 2015.
[9] D.S. Crowe, Jr. C.L. Martin. Hot streak characterization in serpentine exhaust nozzles[R], AIAA-2016-4502, 2016.
[10] SUN X L, WANG Z X, ZHOU L, et al. Experimental and computational investigation of double serpentine nozzle[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(11): 2035-2050.
[11]SUN X, WANG Z, ZHOU L, et al. Influences of design parameters on a double serpentine convergent nozzle[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(7): 072301.
[12] 周莉, 孟钰博, 王占学. S弯收扩喷管流动特性数值研究[J]. 推进技术, 2021,42(01):103-113. DOI:10.13675/j.cnki.tjjs.200271.
ZHOU L, MENG Y B, WANG Z X. Numerical study on flow characteristics of serpentine convergent-divergent nozzle[J]. Journal of Propulsion Technology,2021, 42(1): 103-113(in Chinese).
[13] 孟钰博, 史经纬, 周莉等. 异型喷口的多维偏转 S 弯喷管设计方法研究[J]. 航空学报, 2024, 45:128930.
MENG Y B, SHI J W, ZHOU L, et al. Design method of multi-dimensional deflected serpentine nozzle with abnormal exit[J].Acta Aeronautica et Astronautica Sinica, 2024, 45:128930. (in Chinese). doi: 10.7527/S1000-6893.2023.28930
[14] Claus R W,Lavelle T,Townsend S,et al. Variable fidelity analysis of complete engine systems[R]. AIAA 2007-5042.
[15] LYTLE J , FOLLEN G , NAIMAN C ,et al.Numerical propulsion system simulation (NPSS) 1999 industry review[R]. NASA/TM-2000-209795.
[16] Nichols L D,Chamis C C. Numerical propulsion system simulation:an interdisciplinary approach[R]. AIAA 91-3554.
[17] Claus R W,Evans A L,Lylte J K,et al. Numerical Propulsion System Simulation[J]. Computing Systems in Engineering,1991,2(4):357-364.
[18] Lytel J,Follen G,Naiman C,et al. 2001 Numerical Propulsion System Simulation Review[R]. NASA/TM-2002-211197.
[19] Pachidis V A, Pilidis P, Alexander T, et al. Advanced performance simulation of a turbofan engine intake[J]. Journal of propulsion and power, 2006, 22(1): 201-205.
[20] Reitenbach S, Schnos M, Becker R G, et al. Optimization of compressor variable geometry settings using multi-fidelity simulation[R]. ASME GT 2015-42832.
[21] Follen G,Aubuchon M. Numerical zooming between a NPSS engine system simulation and a one-dimensional high compressor analysis code[R]. NASA/TM-2000-209913.
[22] 宋甫,周莉,王占学,等.部件三维仿真模型与发动机循环参数分析的耦合方法研究[J].推进技术,2022,43(07):85-92.DOI:10.13675/j.cnki.tjjs.201000.
SONG F,ZHOU L,WANG Z X, et al. Coupling method between three-dimensional component simulation model and aero-engine cycle parameter analysis[J]. Journal of Propulsion Technology,2022,43(7):201000 (in Chinese).
[23] SONG F ,ZHOU L ,WANG Z , et al.Integration of high-fidelity model of forward variable area bypass injector into zero-dimensional variable cycle engine model[J]. Chinese Journal of Aeronautics, 2021, 34(08):1-15.
[24] XU Y B, YAN C, PIAO Y. Analysis of discrepancies between 3-D coupled and uncoupled schemes based on CFD in full engine simulation[J]. Aerospace Science and Technology, 2022, 131: 107978.
[25] Connolly J W, Friedlander D J, Kopasakis G. Computational fluid dynamics modeling of a supersonic nozzle and integration into a variable cycle engine model[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH: 2014: 3687.
[26] 陈玉春, 黄兴, 高本兵, 等. 发动机总体与尾喷管三维并行设计研究[J].航空动力学报, 2007,(10):1695-1699. DOI:10.13224/j.cnki.jasp.2007.10.019.
CHEN Y C, HUANG X, GAO B B, et al. Parallel design of turbo engine and three-dimensional nozzle[J]. Journal of Aerospace Power, 2007,(10):1695-1699. (in Chinese)
[27] 许哲文, 唐海龙, 陈 敏, 等. 基于混合维度仿真的自适应循环发动机引射喷管安装性能研究[J]. 推进技术, 2023,44(9):2207083.
XU Z W, TANG H L, CHEN M, et al. Installed performance of adaptive cycle engine ejector nozzle based on multi-Fidelity simulation[J]. Journal of Propulsion Technology, 2023, 44(9): 2207083 (in Chinese).
[28] 孙啸林. 低可探测S弯喷管设计及性能评估方法研究[D]. 西北工业大学, 2020: 19-30. DOI:10.27406/d.cnki.gxbgu.2018.000041.
SUN X L. Investigation on design method and performance estimation of low observable S-shaped nozzle[D]. Xi’an: Northwestern Polytechnical University, 2020: 19-30 (in Chinese).
[29] Alexander I.J. Forrester, Andras Sobester, Andy J. Keane. 基于代理模型的工程设计:实用指南[M]. 韩忠华,张科施,译. 北京:航空工业出版社,2018: 17-26.
Alexander I.J. Forrester, Andras Sobester, Andy J. Keane. Engineering design via surrogate modelling: A practical guide[M]. HAN Z H, ZHANG K S, translated. Beijing: Aviation Industry Press, 2018: 17-26 (in Chinese).
[30] 周红. 变循环发动机特性分析及其与飞机一体化设计研究[D]. 西北工业大学, 2017: 42-44.
ZHOU H. Investigation on the variable cycle engine characteristics and integration design with aircraft[D]. Xi’an: Northwestern Polytechnical University, 2017: 42-44(in Chinese).
[31]郭霄,杨青真,李岳锋等.大宽高比S形二元喷管电磁散射特性研究[J].电子设计工程,2014,22(12):13-17.DOI:10.14022/j.cnki.dzsjgc.2014.12.058.
GUO X, YANG Q Z, LI Y F, et al. Investigation on radar cross-section of S-shaped 2-D nozzles with large width-height ratio[J]. Electronic Design Engineering, 2014,22(12):13-17 (in Chinese).
文章导航

/