论文

燃料电池无人机混合电源系统稳定性及功率控制方法

  • 邓舒豪 ,
  • 雷涛 ,
  • 金贤球 ,
  • 陈俊祥 ,
  • 黄代文 ,
  • 张晓斌
展开
  • 1.西北工业大学 自动化学院,西安 710129
    2.飞机电推进技术工业和信息化部重点实验室,西安 710072
    3.航空工业成都飞机设计研究所,成都 610091
.E-mail:shuhao_d@163.com

收稿日期: 2023-12-27

  修回日期: 2024-02-21

  录用日期: 2024-03-25

  网络出版日期: 2024-04-19

基金资助

国家自然科学基金(5877178);航空科学基金(2022Z024053)

Stability and power control method of hybrid power system for fuel cell UAVs

  • Shuhao DENG ,
  • Tao LEI ,
  • Xianqiu JIN ,
  • Junxiang CHEN ,
  • Daiwen HUANG ,
  • Xiaobin ZHANG
Expand
  • 1.School of Automation,Northwestern Polytechnical University,Xi’an  710129,China
    2.Key Laboratory of Aircraft Electric Propulsion Technology,Ministry of Industry and Information Technology,Xi’an  710072,China
    3.AVIC Chengdu Aircraft Design and Research Institute,Chengdu  610091,China
E-mail: shuhao_d@163.com

Received date: 2023-12-27

  Revised date: 2024-02-21

  Accepted date: 2024-03-25

  Online published: 2024-04-19

Supported by

National Natural Science Foundation of China(5877178);Aeronautical Science Foundation of China(2022Z024053)

摘要

针对燃料电池/锂电池混合电动无人机电推进系统能源稳定性问题开展了分析。依据无人机直流微网架构确定了电推进系统带恒功率负载的稳定边界条件,并对直流微电网系统进行功率优化控制。根据燃料电池无人机典型飞行任务剖面,采用燃料电池/锂电池并联式混合电源作为电推进系统的供电单元,基于机载电推进恒功率负载的负阻抗特性,开展直流微电网系统小信号和大信号稳定性分析。利用混合势函数法得到电源系统稳定边界条件,通过增加超级电容提高系统大信号稳定域。为了优化控制系统功率响应,设计了基于规则状态机的能量管理策略,推导出系统稳定边界条件与功率优化控制之间的约束关系。搭建数字仿真模型和设计半物理实时仿真验证平台,仿真结果表明:提出的增加虚拟电阻与超级电容的控制方法,具有较好的系统稳定性和功率优化控制效果。

本文引用格式

邓舒豪 , 雷涛 , 金贤球 , 陈俊祥 , 黄代文 , 张晓斌 . 燃料电池无人机混合电源系统稳定性及功率控制方法[J]. 航空学报, 2024 , 45(17) : 530032 -530032 . DOI: 10.7527/S1000-6893.2023.30032

Abstract

This paper analyzes the stability issues of the fuel cell/lithium battery hybrid electric propulsion energy system for UAVs. Based on the UAV’s DC microgrid architecture, the stable boundary conditions with constant power load for the electric propulsion system are determined, and power optimization control is carried out for the DC microgrid system. According to the typical flight mission profiles of fuel cell UAVs, a fuel cell/lithium battery parallel hybrid power source is used as the power supply unit for the electric propulsion system. Based on the negative impedance characteristics of the onboard electric propulsion constant power load, small-signal and large-signal stability analyses of the DC microgrid system are conducted. The stable boundary conditions of the power supply system are obtained using the hybrid potential function method, and the system’s large signal stability domain is improved by adding supercapacitor. To optimize the power response of the control system, an energy management strategy based on the rule-based state machine is designed, and the constraint relationship between the stable boundary conditions and power optimization control is derived. A digital simulation model is built, and a semi-physical real-time simulation verification platform is designed. Simulation results show that the proposed control method of adding virtual resistance and supercapacitor has good system stability and power optimization control effects.

参考文献

1 陈培儒. 电推进飞机: 开启航空业的新时代[J]. 大飞机2018(11): 44-48.
  CHEN P R. Electric propulsion aircraft: Opening a new era of aviation industry[J]. Jetliner20187(11): 44-48 (in Chinese).
2 GONG A, VERSTRAETE D. Fuel cell propulsion in small fixed-wing unmanned aerial vehicles: Current status and research needs[J]. International Journal of Hydrogen Energy201742(33): 21311-21333.
3 GONG A, VERSTRAETE D. Design and bench test of a fuel-cell/battery hybrid UAV propulsion system using metal hydride hydrogen storage [C]∥Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2017.
4 杨慧君, 邓卫国, 关世义, 等. 新型长航时燃料电池战术无人航空系统: XFC无人机[J]. 飞航导弹2014(7): 32-38.
  YANG H J, DENG W G, GUAN S Y, et al. A new long-endurance fuel cell tactical unmanned aerial system: XFC UAV[J]. Aerodynamic Missile Journal2014(7): 32-38 (in Chinese).
5 KO S, SHIN J. Projection of fuel cell electric vehicle demand reflecting the feedback effects between market conditions and market share affected by spatial factors[J]. Energy Policy2023173: 113385.
6 MANICKAVASAGAM K, THOTAKANAMA N K, PUTTARAJ V. Intelligent energy management system for renewable energy driven ship[J]. IET Electrical Systems in Transportation20199(1): 24-34.
7 FARAJOLLAHI A H, ROSTAMI M, MAREFATI M. A hybrid-electric propulsion system for an unmanned aerial vehicle based on proton exchange membrane fuel cell, battery, and electric motor[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects202244(1): 934-950.
8 ZHAO H W, JIANG X, HE L K, et al. Energy management strategy for hybrid-electric propulsion UAVs[C]∥2022 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific). Piscataway: IEEE Press, 2022: 1-6.
9 OETTERSHAGEN P, MELZER A, MANTEL T, et al. A solar-powered hand-launchable UAV for low-altitude multi-day continuous flight[C]∥2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2015: 3986-3993.
10 BRADLEY T H, MOFFITT B A, MAVRIS D, et al. Applications transportation aviation: Fuel cells [M]∥Encyclopedia of Electrochemical Power Sources. Amsterdam: Elsevier, 2009: 186-192.
11 戴月领, 贺云涛, 刘莉, 等. 燃料电池无人机发展及关键技术分析[J]. 战术导弹技术2018(1): 65-71.
  DAI Y L, HE Y T, LIU L, et al. Development of fuel cell UAV and analysis of key technology[J]. Tactical Missile Technology2018(1): 65-71 (in Chinese).
12 LEI T, YANG Z, LIN Z C, et al. State of art on energy management strategy for hybrid-powered unmanned aerial vehicle[J]. Chinese Journal of Aeronautics201932(6): 1488-1503.
13 GAO Q X, LEI T, DENG F, et al. A deep reinforcement learning based energy management strategy for fuel-cell electric UAV[C]∥2022 International Conference on Power Energy Systems and Applications (ICoPESA). Piscataway: IEEE Press, 2022: 524-530.
14 BARZKAR A, GHASSEMI M. Electric power systems in more and all electric aircraft: A review[C]∥IEEE Access. Piscataway: IEEE Press, 2020: 169314-169332.
15 LIU Y, HUANG T, XUE L, et al. Research on energy optimal method of more electrical aircraft base on energy storage[C]∥CSAA/IET International Conference on Aircraft Utility Systems (AUS 2022). London: IET, 2022: 465-471.
16 IOANNOU S, ARGYROU M C, CHRISTODOULIDES P, et al. Small signal transfer functions and mathematical model of the boost power converter[C]∥The 12th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2020). London: IET, 2021: 245-250.
17 RAO F, WU X S, GAO W, et al. Small signal modeling and simulation of buck-boost circuit in DCM mode[C]∥2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). Piscataway: IEEE Press, 2020: 2564-2569.
18 CHADHA A, KAZIMIERCZUK M K. Small-signal modeling of open-loop PWM tapped-inductor buck DC-DC converter in CCM[J]. IEEE Transactions on Industrial Electronics202168(7): 5765-5775.
19 BECHAR M, HAZZAB A, HABBAB M. Real-Time scalar control of induction motor using rt-lab software[C]∥2017 5th International Conference on Electrical Engineering-Boumerdes (ICEE-B). Piscataway: IEEE Press, 2017: 1-5.
20 MOLDOVAN T, IN?E R, NEME? R O, et al. Typhoon HIL real-time validation of permanent magnet synchronous motor’s control[C]∥2021 9th International Conference on Modern Power Systems (MPS). Piscataway: IEEE Press, 2021: 1-6.
文章导航

/