材料工程与机械制造

沙盲环境直升机桨叶磨损分析方法

  • 谭剑锋 ,
  • 闫羽泽 ,
  • 张卫国 ,
  • 刘亚奎 ,
  • 邵天双
展开
  • 1.南京工业大学 机械与动力工程学院,南京 211816
    2.中国空气动力研究与发展中心 低速空气动力研究所,绵阳 621000
    3.航空工业空气动力研究院,哈尔滨 150066

收稿日期: 2024-07-30

  修回日期: 2024-08-30

  录用日期: 2024-09-19

  网络出版日期: 2024-10-08

基金资助

国家自然科学基金(12172165);江苏省自然科学基金(BK20211259);江苏省青蓝工程“优秀青年骨干教师”项目

Analysis method of helicopter blade erosion in brownout condition

  • Jianfeng TAN ,
  • Yuze YAN ,
  • Weiguo ZHANG ,
  • Yakui LIU ,
  • Tianshuang SHAO
Expand
  • 1.School of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 211816,China
    2.Low Speed Aerodynamics Research Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China
    3.Aerodynamics Research Institute,Aviation Industry Corporation of China,Harbin 150066,China

Received date: 2024-07-30

  Revised date: 2024-08-30

  Accepted date: 2024-09-19

  Online published: 2024-10-08

Supported by

National Natural Science Foundation of China(12172165);Natural Science Foundation of Jiangsu Province(BK20211259);Outstanding Young Backbone Teacher Project of Jiangsu Qinglan Project

摘要

直升机沙盲现象不仅威胁飞行安全,而且会引发桨叶磨损,降低旋翼性能。为此,基于黏性涡粒子法和离散单元法的直升机沙盲分析模型计算沙云时变形态,耦合沙粒-桨叶冲击模型与桨叶磨损模型,考虑旋翼桨叶高速冲击磨损特性,建立沙盲环境直升机桨叶磨损分析方法。通过与镍合金、SS304不锈钢、双向碳纤维增强环氧树脂(CF/EP)、玻璃纤维增强环氧树脂(GF/EP)、聚氨酯(PU)、Ti-6Al-4V钛合金的靶板磨损试验对比,验证了分析方法的准确性。随后研究EH-60L直升机前飞沙盲环境的桨叶磨损特性,并分析飞行速度对桨叶磨损的影响特性。直升机沙盲环境下,桨叶与沙云碰撞程度、桨叶磨损、旋翼磨损区域均随时间延长而显著增加,同时,受桨叶进入沙云时间更长、沙粒冲击速度更大、冲击角度更大的影响,桨尖磨损远高于桨叶内侧。此外,桨尖磨损和旋翼磨损区域随飞行速度增加而先增大后减小。

本文引用格式

谭剑锋 , 闫羽泽 , 张卫国 , 刘亚奎 , 邵天双 . 沙盲环境直升机桨叶磨损分析方法[J]. 航空学报, 2025 , 46(9) : 431012 -431012 . DOI: 10.7527/S1000-6893.2024.31012

Abstract

The behavior of helicopter brownout endangers flight safety, induces rotor blade erosion, and reduces its performance. An analysis method of helicopter blade erosion in brownout condition is then proposed. In this method, variations of the sand cloud are simulated by a helicopter brownout model based on a viscous vortex particle method and a discrete element method, a collision and erosion models between blade and sand cloud are coupled, and the characteristics of blade erosion with high velocity is also considered. This work compares with experimental data of plane erosion with different impact velocities, impact angles, and materials, including nickel, SS304 stainless steel, bidirectional Carbon Fiber Reinforced Epoxy (CF/EP), Glass Fiber Reinforced Epoxy (GF/EP), Polyurethane (PU), and Ti-6Al-4V titanium, to validate the accuracy of the present method. The characteristics of blade erosion for the EH-60L helicopter in brownout condition is then analyzed, and the influence of flight speed on the blade erosion is also investigated. As time increases, the collision between the blade and the sand cloud, the blade erosion, and the rotor erosion zone significantly increases in helicopter brownout condition. Furthermore, the erosion in blade tip is significantly worse than inner blade due to the longer exposure time, larger impact velocity and angle. Additionally, the blade erosion and the rotor erosion zone increase firstly and then reduce with increasing flight speed.

参考文献

1 MILLER J, GODFROY-COOPER M, SZOBOSZLAY Z. Degraded Visual Environment Mitigation (DVE-M) program, bumper RADAR obstacle cueing flight trials 2020[C]∥ Vertical Flight Society’s 77th Annual Forum & Technology Display. Washington,D.C.: AHS,2021: 1-31.
2 TAKAHASHI M D, FUJIZAWA B T, LUSARDI J A, et al. Autonomous guidance and flight control on a partial-authority black hawk helicopter[J]. Journal of Aerospace Information Systems202118(10): 686-701.
3 U.S.ARMY, Devcom Aviation&Missile Center. Degraded Visual Environment Mitigation (DVE-M)[EB/OL]. (2020-10-17)[2024-07-30].
4 ?ZEN ?, GEDIKLI H, ?ZTüRK B. Improvement of solid particle erosion resistance of helicopter rotor blade with hybrid composite shield[J]. Engineering Failure Analysis2021121: 105175.
5 HAEHNEL R B, MOULTON M A, WENREN W, et al. A model to simulate rotorcraft-induced brownout[C]?∥ Proceedings of the 64th Annual Forum of the American Helicopter Society. Washington, D.C.: AHS, 2008: 589-601.
6 ROVERE F, BARAKOS G N, STEIJL R. Comparison between Eulerian and Lagrangian methods to predict brownout clouds[J]. Aerospace Science and Technology2023137: 108306.
7 PHILLIPS C, BROWN R E. Eulerian simulation of the fluid dynamics of helicopter brownout[J]. Journal of Aircraft200946(4): 1416-1429.
8 ROVERE F, BARAKOS G, STEIJL R. Safety analysis of rotors in ground effect[J]. Aerospace Science and Technology2022129: 107655.
9 GOVINDARAJAN B M, LEISHMAN J G. Predictions of rotor and rotor/airframe configurational effects on brownout dust clouds[J]. Journal of Aircraft201653(2): 545-560.
10 TAN J F, GAO J E, BARAKOS G N, et al. Novel approach to helicopter brownout based on vortex and discrete element methods[J]. Aerospace Science and Technology2021116: 106839.
11 胡健平, 徐国华, 史勇杰, 等. 基于CFD-DEM耦合数值模拟的全尺寸直升机沙盲形成机理[J]. 航空学报202041(3): 123363.
  HU J P, XU G H, SHI Y J, et al. Formation mechanism of brownout in full-scale helicopter based on CFD-DEM couplings numerical simulation[J]. Acta Aeronautica et Astronautica Sinica202041(3): 123363 (in Chinese).
12 TAN J F, GE Y Y, ZHANG W G, et al. Numerical study on helicopter brownout with crosswind[J]. Aerospace Science and Technology2022131: 107965.
13 GOVINDARAJAN B, LEISHMAN J G, GUMEROV N A. Evaluation of particle clustering algorithms in the prediction of brownout dust clouds[C]∥ Presented at the 67th Annual Forum of the American Helicopter Society. Washington, D.C.: AHS, 2011: 325-347.
14 TAN J F, YON T, HE L, et al. Accelerated method of helicopter brownout with particle-particle collisions[J]. Aerospace Science and Technology2022124: 107511.
15 LIN H Y, XU C H, JIANG C W, et al. Finite particle approach for high-fidelity simulation on helicopter brownout[J]. AIAA Journal202462(1): 193-208.
16 LIN N, ARABNEJAD H, SHIRAZI S A, et al. Experimental study of particle size, shape and particle flow rate on erosion of stainless steel[J]. Powder Technology2018336: 70-79.
17 HARSHA A P, JHA S K. Erosive wear studies of epoxy-based composites at normal incidence[J]. Wear2008265(7-8): 1129-1135.
18 CAI F, GAO F, PANT S, et al. Solid particle erosion behaviors of carbon-fiber epoxy composite and pure titanium[J]. Journal of Materials Engineering and Performance201625(1): 290-296.
19 谭剑锋, 周天熠, 王畅, 等. 旋翼地面效应的气动建模与特性[J]. 航空学报201940(6): 122602.
  TAN J F, ZHOU T Y, WANG C, et al. Aerodynamic model and characteristics of rotor in ground effect[J]. Acta Aeronautica et Astronautica Sinica201940(6): 122602 (in Chinese).
20 TAN J F, CAI J G, BARAKOS G N, et al. Computational study on the aerodynamic interference between tandem rotors and nearby obstacles[J]. Journal of Aircraft202057(3): 456-468.
21 谭剑锋, 何龙, 于领军, 等. 基于黏性涡粒子/沙粒DEM的直升机沙盲建模[J]. 航空学报202243(8): 125536.
  TAN J F, HE L, YU L J, et al. Helicopter brownout modeling based on viscous vortex particle and sand particle DEM[J]. Acta Aeronautica et Astronautica Sinica202243(8): 125536 (in Chinese).
22 谭剑锋, 杨宇霄, 张卫国 等. 侧风对直升机沙盲特性影响[J]. 北京航空航天大学学报202450(10): 1-12.
  TAN J F, YANG Y X, ZHANG, W G, et al. Influence of crosswind on the helicopter brownout[J]. Journal of Beijing University of Aeronautics and Astronautics202450(10): 1-12 (in Chinese).
23 谭剑锋, 韩水, 王畅, 等. 基于DEM的直升机沙盲加速计算方法[J]. 北京航空航天大学学报202349(6): 1352-1361.
  TAN J F, HAN S, WANG C, et al. Accelerated computational method of helicopter brownout based on DEM[J]. Journal of Beijing University of Aeronautics and Astronautics202349(6): 1352-1361 (in Chinese).
24 FINNIE I, MCFADDEN D H. On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence[J]. Wear197848(1): 181-190.
25 OKA Y I, OKAMURA K, YOSHIDA T. Practical estimation of erosion damage caused by solid particle impact[J]. Wear2005259: 95-101.
26 OKA Y I, YOSHIDA T. Practical estimation of erosion damage caused by solid particle impact[J]. Wear2005259: 102-109.
27 GRANT G, TABAKOFF W. An experimental investigation of the erosive characteristics of 2024 Aluminum alloy[D]. Cincinnati: University of Cincinnati, 1973: 1-41.
28 YAN C, CHEN W, ZHAO Z H, et al. A probability prediction model of erosion rate for Ti-6Al-4V on high-speed sand erosion[J]. Powder Technology2020364: 373-381.
29 DAVIES D P, JENKINS S L. Influence of forming method on the tensile and fatigue properties of Ti-6Al-4V sheet for helicopter erosion shield applications[J]. Materials & Design201233: 254-263.
30 WONG O D, TANNER P E. Photogrammetric measurements of an EH-60L brownout cloud[J]. Journal of the American Helicopter Society201661(1): 1-10.
文章导航

/