氢燃烧室边界层回火机制和预测方法

  • 张晓旭 ,
  • 肖为 ,
  • 曹俊 ,
  • 李维 ,
  • 周华 ,
  • 任祝寅
展开
  • 1. 清华大学航空发动机研究院
    2. 中国航发湖南动力机械研究所
    3. 株洲航空动力研究所
    4. 清华大学

收稿日期: 2024-07-17

  修回日期: 2024-09-26

  网络出版日期: 2024-09-29

基金资助

MJ专项;航发集团产学研

The mechanism and prediction model of boundary layer flashback in hydrogen-fueled combustor

  • ZHANG Xiao-Xu ,
  • XIAO Wei ,
  • CAO Jun ,
  • LI Wei ,
  • ZHOU Hua ,
  • REN Zhu-Yin
Expand

Received date: 2024-07-17

  Revised date: 2024-09-26

  Online published: 2024-09-29

摘要

“双碳”背景下,氢气作为一种零碳清洁燃料,得到了航空业的广泛关注。相比于航空煤油,氢气具有更高的火焰传播速度、更薄的火焰厚度,增大了氢燃烧室发生回火的风险。目前广泛使用的微预混燃烧技术虽然可以有效降低核心流回火风险,但是边界层回火的风险依然存在。如何在设计阶段准确预测边界层回火,进而在运行阶段规避喷嘴回火风险,是研制氢燃料燃烧室面临的关键技术挑战。本文针对氢燃烧边界层回火问题,分析了氢燃料分子输运、火焰传播特性对于边界层回火的影响,综述了针对无旋边界层回火和旋流边界层回火的实验测量和数值仿真发现,梳理了近几十年来发展的层流和湍流边界层回火判据,介绍了近期发展的快速边界层回火预测方法,讨论了氢燃料边界层回火研究面临的挑战,展望了氢燃料边界层回火判据与建模的发展趋势。

本文引用格式

张晓旭 , 肖为 , 曹俊 , 李维 , 周华 , 任祝寅 . 氢燃烧室边界层回火机制和预测方法[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.30952

Abstract

In the pursuit of a carbon-neutral society, hydrogen, as a zero-carbon fuel, has gained significant attention in the aviation propulsion systems. Hydrogen has a higher flame propagation speed and a thinner flame thickness, which increases the risk of flashback in the design and operation of hydrogen-fueled combustor. The widely used micro-mixer nozzle effectively prevents core flow flashback by increasing axial velocity. However, the boundary layer flashback remains a challenging issue in hydrogen-fueled combustor. This paper investigates the boundary layer flashback of hydrogen-fueled combustor, examining the flame propagation characteristics and unique molecular transport properties of hydrogen. It reviews experimental and numerical simulations for non-swirling and swirling boundary layer flashback, summarizes classical critical velocity gradient theory for boundary layer flashback, and outlines laminar and turbulent boundary layer flashback criteria developed over recent decades. Finally, this work introduces fast flashback prediction method, discusses the current challenges in boundary layer flashback research in hydrogen-fueled combustor, and outlooks the future development of boundary layer flashback for premixed hy-drogen flames.

参考文献

[1]KALANTARI A, MCDONELL V.Boundary layer flashback of non-swirling premixed flames: Mechanisms, fundamental research, and recent advances [J]. Prog Energy Combust Sci, 2017, 61: 249-92.
[2]吕海陆, 李丹, 张扬.富氢燃料气射流预混火焰回火特性的研究进展[J].力学学报, 2023, 55(12):2718-31
[3]BILLANT P, CHOMAZ J-M, HUERRE P.Experimental study of vortex breakdown in swirling jets [J]. J Fluid Mech, 1998, 376: 183-219.
[4]LEIBOVICH S.The Structure of Vortex Breakdown[J].Annual Review of Fluid Mechanics, 1978, 10(1):221-46
[5]KONLE M, KIESEWETTER F, SATTELMAYER T.Simultaneous high repetition rate PIV–LIF-measurements of CIVB driven flashback[J].Exp Fluids, 2008, 44(4):529-38
[6]ASATO K, WADA H, HIRUMA T, et al.Characteristics of flame propagation in a vortex core: Validity of a model for flame propagation[J].Combust Flame, 1997, 110(4):418-28
[7]DUWIG C, FUCHS L.Large eddy simulation of vortex breakdownflame interaction[J].Physics of Fluids, 2007, 19(7):075103-
[8]KONLE M, SATTELMAYER T.Interaction of heat release and vortex breakdown during flame flashback driven by combustion induced vortex breakdown[J].Exp Fluids, 2009, 47(4):627-35
[9]DAM B, CORONA G, HAYDER M, et al.Effects of syngas composition on combustion induced vortex breakdown (CIVB) flashback in a swirl stabilized combustor[J].Fuel, 2011, 90(11):3274-84
[10]EICHLER C, SATTELMAYER T.Premixed flame flashback in wall boundary layers studied by long-distance micro-PIV[J].Exp Fluids, 2012, 52(2):347-60
[11]GRUBER A, CHEN J H, VALIEV D, et al.Direct numerical simulation of premixed flame boundary layer flashback in turbulent channel flow [J]. J Fluid Mech, 2012, 709: 516-42.
[12]莫妲, 林宇震, 韩啸.氢气微混燃烧技术研究现状和未来展望[J].航空学报, 2024, 45(07):36-62
[13]莫妲, 刘一雄, 林宇震, et al.氢气微混扩散燃烧技术发展 [J]. 航空动力, 2024, (02): 37-40.
[14]GONG X, WANG X, ZHOU H, et al.Laminar flame speed and autoignition characteristics of surrogate jet fuel blended with hydrogen[J].Proc Combust Inst, 2023, 39(2):1773-81
[15]LEWIS B, ELBE G V.Stability and Structure of Burner Flames[J].J Chem Phys, 1943, 11(2):75-97
[16]GARSIDE J, FORSYTH J, TOWNEND D.The stability of burner flames [J]. Journal of Institute of Fuel, 1945, 18: 175-85.
[17]EDSE R.Studies on burner flames of hydrogen-oxygen mixtures at high pressures [J]. Wright Air Development Centre Technical Report, 1952: 52-9.
[18]FINE B.Stability limits and burning velocities of laminar hydrogen-air flames at reduced pressure [R], 1956.
[19]FINE B.Further experiments on the stability of laminar and turbulent hydrogen-air flames at reduced pressures [R], 1957.
[20]FINE B.The flashback of laminar and turbulent burner flames at reduced pressure[J].Combust Flame, 1958, 2(3):253-66
[21]DANIELE S, JANSOHN P, BOULOUCHOS K.Flashback Propensity of Syngas Flames at High Pressure: Diagnostic and Control [Z]. 2010: 1169-75.10.1115/GT2010-23456
[22]DUAN Z, SHAFFER B, MCDONELL V.Study of Fuel Composition, Burner Material, and Tip Temperature Effects on Flashback of Enclosed Jet Flame [J]. J Eng Gas Turb Power, 2013, 135(12).
[23]DUAN Z, SHAFFER B, MCDONELL V, et al.Influence of Burner Material, Tip Temperature, and Geometrical Flame Configuration on Flashback Propensity of H2-Air Jet Flames [J]. J Eng Gas Turb Power, 2013, 136(2).
[24]EICHLER C, BAUMGARTNER G, SATTELMAYER T.Experimental Investigation of Turbulent Boundary Layer Flashback Limits for Premixed Hydrogen-Air Flames Confined in Ducts [J]. J Eng Gas Turb Power, 2011, 134(1).
[25]BAUMGARTNER G, BOECK L R, SATTELMAYER T.Experimental Investigation of the Transition Mechanism From Stable Flame to Flashback in a Generic Premixed Combustion System With High-Speed Micro-Particle Image Velocimetry and Micro-PLIF Combined With Chemiluminescence Imaging [J]. J Eng Gas Turb Power, 2015, 138(2).
[26]LEE S T, T' IEN J S.A numerical analysis of flame flashback in a premixed laminar system [J]. Combust Flame, 1982, 48: 273-85.
[27]ENDRES A, SATTELMAYER T.Large Eddy simulation of confined turbulent boundary layer flashback of premixed hydrogen-air flames [J]. Int J Heat Fluid Flow, 2018, 72: 151-60.
[28]ENDRES A, SATTELMAYER T.Numerical Investigation of Pressure Influence on the Confined Turbulent Boundary Layer Flashback Process[J].Fluids, 2019, 4(3):146-
[29]GRUBER A, KERSTEIN A R, VALIEV D, et al.Modeling of mean flame shape during premixed flame flashback in turbulent boundary layers[J].Proc Combust Inst, 2015, 35(2):1485-92
[30]AHMED U, PILLAI A L, CHAKRABORTY N, et al.Statistical behavior of turbulent kinetic energy transport in boundary layer flashback of hydrogen-rich premixed combustion[J].Physical Review Fluids, 2019, 4(10):103201-
[31]WANG H, WANG Z, LUO K, et al.Direct numerical simulation of turbulent boundary layer premixed combustion under auto-ignitive conditions [J]. Combust Flame, 2021, 228: 292-301.
[32]ZHU Z, WANG H, CHEN G, et al.Interactions of turbulence and flame during turbulent boundary layer premixed flame flashback under isothermal and adiabatic wall conditions using direct numerical simulation [J]. Physics of Fluids, 2023, 35(12).
[33]EBI D, CLEMENS N T.Experimental investigation of upstream flame propagation during boundary layer flashback of swirl flames [J]. Combust Flame, 2016, 168: 39-52.
[34]EBI D, RANJAN R, CLEMENS N T.Coupling between premixed flame propagation and swirl flow during boundary layer flashback[J].Exp Fluids, 2018, 59(7):109-
[35]RANJAN R, CLEMENS N T.Insights into flashback-to-flameholding transition of hydrogen-rich stratified swirl flames[J].Proc Combust Inst, 2021, 38(4):6289-97
[36]RANJAN R, EBI D F, CLEMENS N T.Role of inertial forces in flame-flow interaction during premixed swirl flame flashback[J].Proc Combust Inst, 2019, 37(4):5155-62
[37]EBI D, BOMBACH R, JANSOHN P.Swirl flame boundary layer flashback at elevated pressure: Modes of propagation and effect of hydrogen addition[J].Proc Combust Inst, 2021, 38(4):6345-53
[38]LIETZ C, RAMAN V.Large Eddy Simulation of Flame Flashback in Swirling Premixed CH4/H2-Air Flames [M]. 53rd AIAA Aerospace Sciences Meeting. 2015: AIAA 2015-0844.
[39]XIA H, HAN W, WEI X, et al.Numerical investigation of boundary layer flashback of CH4H2air swirl flames under different thermal boundary conditions in a bluff‐body swirl burner[J].Proc Combust Inst, 2023, 39(4):4541-51
[40]NOVOSELOV A G, EBI D, NOIRAY N.Confined Boundary-Layer Flashback Flame Dynamics in a Turbulent Swirling Flow[J].AIAA Journal, 2023, 61(4):1548-54
[41]ZHANG S, LU Z, YANG Y.Modeling the boundary-layer flashback of premixed hydrogen-enriched swirling flames at high pressures [J]. Combust Flame, 2023, 255: 112900.
[42]ZHANG X, WANG X, ZHOU H, et al.Effects of Soret and differential diffusion on boundary layer flashback of H2CH4 swirling flames[J].Proc Combust Inst, 2024, 40(1):105327-
[43]LEWIS B, VON ELBE G.Combustion, flames and explosions of gases [M]. Elsevier, 2012.
[44]HARRIS M E, GRUMER J, VON ELBE G, et al.Burning velocities,quenching,and stability data on nonturbulent flames of methane and propane with oxygen and nitrogen: Application of theory of ignition,quenching,and stabilizationto flames of propane and air[J].Symposium on Combustion and Flame, and Explosion Phenomena, 1948, 3(1):80-9
[45]WOHL K.Quenching,flash-back,blow-off-theory and experiment[J].Symposium (International) on Combustion, 1953, 4(1):68-89
[46]BERLAD A, POTTER A.Relation of boundary velocity gradient for flash-back to burning velocity and quenching distance[J].Combust Flame, 1957, 1(1):127-8
[47]KHITRIN L N, MOIN P B, SMIRNOV D B, et al.Peculiarities of laminar- and turbulent-flame flashbacks[J].Symposium (International) on Combustion, 1965, 10(1):1285-91
[48]PUTNAM A A, JENSEN R A.Application of dimensionless numbers to flash-back and other combustion phenomena[J].Symposium on Combustion and Flame, and Explosion Phenomena, 1948, 3(1):89-98
[49]STRAKEY P, SIDWELL T, ONTKO J.Investigation of the effects of hydrogen addition on lean extinction in a swirl stabilized combustor[J].Proc Combust Inst, 2007, 31(2):3173-80
[50]LIN Y-C, DANIELE S, JANSOHN P, et al.Turbulent Flame Speed as an Indicator for Flashback Propensity of Hydrogen-Rich Fuel Gases [J]. J Eng Gas Turb Power, 2013, 135(11).
[51]KALANTARI A, SULLIVAN-LEWIS E, MCDONELL V.Flashback Propensity of Turbulent Hydrogen–Air Jet Flames at Gas Turbine Premixer Conditions [J]. J Eng Gas Turb Power, 2015, 138(6).
[52]HOFERICHTER V, HIRSCH C, SATTELMAYER T.Prediction of Confined Flame Flashback Limits Using Boundary Layer Separation Theory [J]. J Eng Gas Turb Power, 2016, 139(2).
[53]HOFERICHTER V, HIRSCH C, SATTELMAYER T.Analytic prediction of unconfined boundary layer flashback limits in premixed hydrogen–air flames[J].Combustion Theory and Modelling, 2017, 21(3):382-418
[54]NOVOSELOV A G, EBI D, NOIRAY N.Accurate Prediction of Confined Turbulent Boundary Layer Flashback Through a Critically Strained Flame Model [J]. J Eng Gas Turb Power, 2022, 144(10).
[55]BOUVET N, HALTER F, CHAUVEAU C, et al.On the effective Lewis number formulations for lean hydrogenhydrocarbonair mixtures[J].Int J Hydrogen Energy, 2013, 38(14):5949-60
[56]BELL J B, CHENG R K, DAY M S, et al.Numerical simulation of Lewis number effects on lean premixed turbulent flames[J].Proc Combust Inst, 2007, 31(1):1309-17
[57]DUAN Z, KALANTARI A, MCDONELL V.Parametric Analysis of Flashback Propensity With Various Fuel Compositions and Burner Materials [Z]. 2015.10.1115/GT2015-43629
[58]STRATFORD B S.The prediction of separation of the turbulent boundary layer[J].J Fluid Mech, 1959, 5(1):1-16
[59]BECHTOLD J K, MATALON M.The dependence of the Markstein length on stoichiometry[J].Combust Flame, 2001, 127(1):1906-13
[60]BAUMGARTNER G, SATTELMAYER T.Experimental Investigation on the Effect of Boundary Layer Fluid Injection on the Flashback Propensity of Premixed Hydrogen-Air Flames; proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, F, 2013 [C]. V01AT04A011.
文章导航

/