氢燃烧室边界层回火机制和预测方法综述
收稿日期: 2024-07-17
修回日期: 2024-09-02
录用日期: 2024-09-24
网络出版日期: 2024-09-29
Review of mechanism and prediction model of boundary layer flashback in hydrogen-fueled combustor
Received date: 2024-07-17
Revised date: 2024-09-02
Accepted date: 2024-09-24
Online published: 2024-09-29
“双碳”背景下,氢气作为一种零碳清洁燃料,受到了航空业的广泛关注。相比于航空煤油,氢气具有更高的火焰传播速度、更薄的火焰厚度,增大了氢燃烧室发生回火的风险。目前广泛使用的微预混燃烧技术虽然可以有效降低核心流回火风险,但是边界层回火的风险依然存在。如何在设计阶段准确预测边界层回火,进而在运行阶段规避喷嘴回火风险,是研制氢燃料燃烧室面临的关键技术挑战。针对氢燃烧边界层回火问题,分析了氢燃料分子输运、火焰传播特性对于边界层回火的影响,综述了针对无旋边界层回火和旋流边界层回火的实验测量和数值仿真发现,梳理了近几十年来发展的层流和湍流边界层回火判据,介绍了近期发展的快速边界层回火预测方法,讨论了氢燃料边界层回火研究面临的挑战,展望了氢燃料边界层回火判据与建模的发展趋势。
张晓旭 , 肖为 , 曹俊 , 李维 , 周华 , 任祝寅 . 氢燃烧室边界层回火机制和预测方法综述[J]. 航空学报, 2025 , 46(9) : 630952 -630952 . DOI: 10.7527/S1000-6893.2024.30952
In the pursuit of a carbon-neutral society, hydrogen, as a zero-carbon fuel, has gained significant attention in aviation propulsion systems. Hydrogen has a higher flame propagation speed and a thinner flame thickness, which increases the risk of flashback in the design and operation of hydrogen-fueled combustor. The widely used micro-mixer nozzle effectively prevents core flow flashback by increasing axial velocity. However, the boundary layer flashback remains a challenging issue in the hydrogen-fueled combustor. This paper gives a review of the research on the boundary layer flashback of hydrogen-fueled combustor. The flame propagation characteristics and unique molecular transport properties of hydrogen are examined. Experimental and numerical simulations for non-swirling and swirling boundary layer flashback are reviewed. The flashback criteria on the laminar and turbulent boundary layer developed over recent decades are summarized. The fast flashback prediction method is introduced. Current challenges in the research on boundary layer flashback in hydrogen-fueled combustors, and the future development of boundary layer flashback criterion and modeling for premixed hydrogen flames is also discussed.
1 | KALANTARI A, MCDONELL V. Boundary layer flashback of non-swirling premixed flames: Mechanisms, fundamental research, and recent advances[J]. Progress in Energy and Combustion Science, 2017, 61: 249-292. |
2 | 吕海陆, 李丹, 张扬, 等. 富氢燃料气射流预混火焰回火特性的研究进展[J]. 力学学报, 2023, 55(12): 2718-2731. |
LYU H L, LI D, ZHANG Y, et al. Research progress on flashback characteristics of the premixed jet flames of hydrogen-rich fuels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2718-2731 (in Chinese). | |
3 | BILLANT P, CHOMAZ J M, HUERRE P. Experimental study of vortex breakdown in swirling jets[J]. Journal of Fluid Mechanics, 1998, 376(1): 183-219. |
4 | LEIBOVICH S. The structure of vortex breakdown[J]. Annual Review of Fluid Mechanics, 1978, 10: 221-246. |
5 | KONLE M, KIESEWETTER F, SATTELMAYER T. Simultaneous high repetition rate PIV-LIF-measurements of CIVB driven flashback[J]. Experiments in Fluids, 2008, 44(4): 529-538. |
6 | ASATO K, WADA H, HIRUMA T, et al. Characteristics of flame propagation in a vortex core: Validity of a model for flame propagation[J]. Combustion and Flame, 1997, 110(4): 418-428. |
7 | DUWIG C, FUCHS L. Large eddy simulation of vortex breakdown/flame interaction?[J]. Physics of Fluids, 2007, 19(7): 075103. |
8 | KONLE M, SATTELMAYER T. Interaction of heat release and vortex breakdown during flame flashback driven by combustion induced vortex breakdown[J]. Experiments in Fluids, 2009, 47(4): 627-635. |
9 | DAM B, CORONA G, HAYDER M, et al. Effects of syngas composition on combustion induced vortex breakdown (CIVB) flashback in a swirl stabilized combustor[J]. Fuel, 2011, 90(11): 3274-3284. |
10 | EICHLER C, SATTELMAYER T. Premixed flame flashback in wall boundary layers studied by long-distance micro-PIV[J]. Experiments in Fluids, 2012, 52(2): 347-360. |
11 | GRUBER A, CHEN J H, VALIEV D, et al. Direct numerical simulation of premixed flame boundary layer flashback in turbulent channel flow?[J]. Journal of Fluid Mechanics, 2012, 709: 516-542. |
12 | 莫妲, 林宇震, 韩啸, 等. 氢气微混燃烧技术研究现状和未来展望[J]. 航空学报, 2024, 45(7): 028994. |
MO D, LIN Y Z, HAN X, et al. Research progress and future prospect of hydrogen micromix combustion technology?[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 028994 (in Chinese). | |
13 | 莫妲, 刘一雄, 林宇震, 等. 氢气微混扩散燃烧技术发展[J]. 航空动力, 2024(2): 37-40. |
MO D, LIU Y X, LIN Y Z, et al. Development of hydrogen micro-mixing diffusion combustion technology[J]. Aerospace Power, 2024(2): 37-40 (in Chinese). | |
14 | GONG X, WANG X, ZHOU H, et al. Laminar flame speed and autoignition characteristics of surrogate jet fuel blended with hydrogen[J]. Proceedings of the Combustion Institute, 2023, 39(2): 1773-1781. |
15 | ZHANG X X, WANG X, ZHOU H, et al. Effects of Soret and differential diffusion on boundary layer flashback of H2/CH4 swirling flames[J]. Proceedings of the Combustion Institute, 2024, 40(1-4): 105327. |
16 | DANIELE S, JANSOHN P, BOULOUCHOS K. Flashback propensity of syngas flames at high pressure: Diagnostic and control[C]?∥ASME Turbo Expo 2010: Power for Land, Sea, and Air. New York: ASME, 2010: 1169-1175. |
17 | BAUMGARTNER G, SATTELMAYER T. Experimental investigation on the effect of boundary layer fluid injection on the flashback propensity of premixed hydrogen-air flames[C]∥ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. New York: ASME, 2013. |
18 | EICHLER C, BAUMGARTNER G, SATTELMAYER T. Experimental investigation of turbulent boundary layer flashback limits for premixed hydrogen-air flames confined in ducts[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(1): 011502. |
19 | LEWIS B, VON ELBE G. Stability and structure of burner flames?[J]. The Journal of Chemical Physics, 1943, 11(2): 75-97. |
20 | EDSE R. Studies on burner flames of hydrogen-oxygen mixtures at high pressures: Wright Air Development Centre Technical Report[R]. Washington, D.C.: Wright Air Developrnent Centre, 1952. |
21 | FINE B. Stability limits and burning velocities of laminar hydrogen-air flames at reduced pressure: NACA-TN-3833 [R]. Washington, D.C.: NACA, 1956. |
22 | FINE B. Further experiments on the stability of laminar and turbulent hydrogen-air flames at reduced pressures: NACA-TN-3977?[R]. Washington, D.C.: NACA, 1957. |
23 | FINE B. The flashback of laminar and turbulent burner flames at reduced pressure[J]. Combustion and Flame, 1958, 2(3): 253-266. |
24 | DUAN Z X, SHAFFER B, MCDONELL V. Study of fuel composition, burner material, and tip temperature effects on flashback of enclosed jet flame[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(12): 121504. |
25 | DUAN Z X, SHAFFER B, MCDONELL V, et al. Influence of burner material, tip temperature, and geometrical flame configuration on flashback propensity of H2-air jet flames[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(2): 021502. |
26 | BAUMGARTNER G, BOECK L R, SATTELMAYER T. Experimental investigation of the transition mechanism from stable flame to flashback in a generic premixed combustion system with high-speed micro-particle image velocimetry and micro-PLIF combined with chemiluminescence imaging[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(2): 021501. |
27 | LEE S T, T’IEN J S. A numerical analysis of flame flashback in a premixed laminar system?[J]. Combustion and Flame, 1982, 48: 273-285. |
28 | ENDRES A, SATTELMAYER T. Large eddy simulation of confined turbulent boundary layer flashback of premixed hydrogen-air flames?[J]. International Journal of Heat and Fluid Flow, 2018, 72: 151-160. |
29 | ENDRES A, SATTELMAYER T. Numerical investigation of pressure influence on the confined turbulent boundary layer flashback process?[J]. Fluids, 2019, 4(3): 146. |
30 | GRUBER A, KERSTEIN A R, VALIEV D, et al. Modeling of mean flame shape during premixed flame flashback in turbulent boundary layers[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1485-1492. |
31 | AHMED U, PILLAI A L, CHAKRABORTY N, et al. Statistical behavior of turbulent kinetic energy transport in boundary layer flashback of hydrogen-rich premixed combustion[J]. Physical Review Fluids, 2019, 4(10): 103201. |
32 | WANG H O, WANG Z, LUO K, et al. Direct numerical simulation of turbulent boundary layer premixed combustion under auto-ignitive conditions?[J]. Combustion and Flame, 2021, 228: 292-301. |
33 | ZHU Z F, WANG H O, CHEN G, et al. Interactions of turbulence and flame during turbulent boundary layer premixed flame flashback under isothermal and adiabatic wall conditions using direct numerical simulation?[J]. 2023, 35(12): 125106. |
34 | EBI D, CLEMENS N T. Experimental investigation of upstream flame propagation during boundary layer flashback of swirl flames[J]. Combustion and Flame, 2016, 168: 39-52. |
35 | EBI D, RANJAN R, CLEMENS N T. Coupling between premixed flame propagation and swirl flow during boundary layer flashback?[J]. Experiments in Fluids, 2018, 59(7): 109. |
36 | RANJAN R, CLEMENS N T. Insights into flashback-to-flameholding transition of hydrogen-rich stratified swirl flames?[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6289-6297. |
37 | RANJAN R, EBI D F, CLEMENS N T. Role of inertial forces in flame-flow interaction during premixed swirl flame flashback[J]. Proceedings of the Combustion Institute, 2019, 37(4): 5155-5162. |
38 | EBI D, BOMBACH R, JANSOHN P. Swirl flame boundary layer flashback at elevated pressure: Modes of propagation and effect of hydrogen addition[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6345-6353. |
39 | LIETZ C, RAMAN V. Large eddy simulation of flame flashback in swirling premixed CH4/H2-air flames[C]?∥53rd AIAA aerospace sciences meeting. Reston: AIAA, 2015. |
40 | XIA H, HAN W, WEI X T, et al. Numerical investigation of boundary layer flashback of CH4/H2/air swirl flames under different thermal boundary conditions in a bluff‐body swirl burner[J]. Proceedings of the Combustion Institute, 2023, 39(4): 4541-4551. |
41 | NOVOSELOV A G, EBI D, NOIRAY N. Confined boundary-layer flashback flame dynamics in a turbulent swirling flow?[J]. AIAA Journal, 2023, 61(4): 1548-1554. |
42 | ZHANG S M, LU Z, YANG Y. Modeling the boundary-layer flashback of premixed hydrogen-enriched swirling flames at high pressures?[J]. Combustion and Flame, 2023, 255: 112900. |
43 | LEWIS B, VON ELBE G. Combustion, flames and explosions of gases [M].3rd ed. Deron: Academic Press,1987:216-413. |
44 | HARRIS M E, GRUMER J, VON ELBE G, et al. Burning velocities, quenching, and stability data on nonturbulent flames of methane and propane with oxygen and nitrogen application of theory of ignition, quenching, and stabilizationto flames of propane and air[J]. Symposium on Combustion and Flame, and Explosion Phenomena, 1948, 3(1): 80-89. |
45 | WOHL K. Quenching, flash-back, blow-off-theory and experiment[J]. Symposium (International) on Combustion, 1953, 4(1): 68-89. |
46 | BERLAD A L, POTTER A E. Relation of boundary velocity gradient for flash-back to burning velocity and quenching distance[J]. Combustion and Flame, 1957, 1(1): 127-128. |
47 | KHITRIN L N, MOIN P B, SMIRNOV D B, et al. Peculiarities of laminar- and turbulent-flame flashbacks[J]. Symposium (International) on Combustion, 1965, 10(1): 1285-1291. |
48 | PUTNAM A A, JENSEN R A. Application of dimensionless numbers to flash-back and other combustion phenomena[J]. Symposium on Combustion and Flame, and Explosion Phenomena, 1948, 3(1): 89-98. |
49 | STRAKEY P, SIDWELL T, ONTKO J. Investigation of the effects of hydrogen addition on lean extinction in a swirl stabilized combustor?[J]. Proceedings of the Combustion Institute, 2007, 31(2): 3173-3180. |
50 | LIN Y-C, DANIELE S, JANSOHN P, et al. Turbulent flame speed as an indicator for flashback propensity of hydrogen-rich fuel gases?[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(11): 111503. |
51 | KALANTARI A, SULLIVAN-LEWIS E, MCDONELL V. Flashback propensity of turbulent hydrogen-air jet flames at gas turbine premixer conditions[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(6): 061506. |
52 | HOFERICHTER V, HIRSCH C, SATTELMAYER T. Prediction of confined flame flashback limits using boundary layer separation theory[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(2): 021505. |
53 | HOFERICHTER V, HIRSCH C, SATTELMAYER T. Analytic prediction of unconfined boundary layer flashback limits in premixed hydrogen-air flames[J]. Combustion Theory and Modelling, 2017, 21(3): 382-418. |
54 | NOVOSELOV A G, EBI D, NOIRAY N. Accurate prediction of confined turbulent boundary layer flashback through a critically strained flame model[C]?∥ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. New York: ASME, 2022. |
55 | BOUVET N, HALTER F, CHAUVEAU C, et al. On the effective Lewis number formulations for lean hydrogen/hydrocarbon/air mixtures[J]. International Journal of Hydrogen Energy, 2013, 38(14): 5949-5960. |
56 | BELL J B, CHENG R K, DAY M S, et al. Numerical simulation of Lewis number effects on lean premixed turbulent flames[J]. Proceedings of the Combustion Institute, 2007, 31(1): 1309-1317. |
57 | DUAN Z X, KALANTARI A, MCDONELL V. Parametric analysis of flashback propensity with various fuel compositions and burner materials?[C]?∥ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. New York: ASME, 2015. |
58 | STRATFORD B S. The prediction of separation of the turbulent boundary layer[J]. Journal of Fluid Mechanics, 1959, 5: 1-16. |
59 | BECHTOLD J K, MATALON M. The dependence of the Markstein length on stoichiometry[J]. Combustion and Flame, 2001, 127(1-2): 1906-1913. |
/
〈 |
|
〉 |