基于流固耦合方法的翼伞操纵力研究
收稿日期: 2024-07-02
修回日期: 2024-07-22
录用日期: 2024-09-02
网络出版日期: 2024-09-10
基金资助
国家自然科学基金(11972192)
Research on control force of parafoil based on fluid structure interaction method
Received date: 2024-07-02
Revised date: 2024-07-22
Accepted date: 2024-09-02
Online published: 2024-09-10
Supported by
National Natural Science Foundation of China(11972192)
翼伞操纵力是精确空投系统伺服电机选取的关键指标。本文提出了一种基于任意拉格朗日欧拉(Arbitrary Lagrange Euler, ALE)的翼伞操纵力计算方法,以文献翼伞为例进行了不同操纵行程下操纵力计算,计算结果与试验结果规律一致,操纵力误差<5%。在此基础上,探究了空投工况下操纵力的耦合机理及动态变化规律,发现操纵绳下拉至目标操纵行程瞬间,操纵力最大,之后逐渐变小直至稳定。并考察了操纵参数对操纵力的影响,结果表明:操纵速率一定,随着操纵行程增加,最大操纵力及稳态操纵力增大,但增长率均减小;操纵行程一定,随着操纵速率增加,最大操纵力增大,稳态操纵力几乎不变;相比于操纵行程,操纵速率对最大操纵力的影响能力较弱。本文研究成果可为翼伞操纵绳设计及伺服电机选择提供理论依据。
曹皓然 , 黄立家 , 李茜茜 , 余莉 . 基于流固耦合方法的翼伞操纵力研究[J]. 航空学报, 2025 , 46(1) : 630894 -630894 . DOI: 10.7527/S1000-6893.2024.30894
The control force of the parafoil represents a crucial indicator in the selection of servo motors for precision airdrop systems. This paper proposes an Arbitrary Lagrange Euler(ALE)-based method for calculating the control force of the parafoil. The method is demonstrated through calculations of the control force within different control strokes. The calculated results are consistent with the experimental result, with the error being less than 5%. On this basis, the coupling mechanism and dynamic change law of the control force under the airdrop condition are investigated. It is found that the control force reaches the maximum when the control rope is pulled down to the target control stroke, and then gradually decreases until it reaches a steady state. The influence of control parameters on control force is examined. The findings indicate that when the control speed is fixed, an increase in control stroke results in a rise in both maximum control force and steady-state control force, but a decline in the control force rising rate. When the control stroke is held constant, an increase in control speed results in an increase in maximum control force, while the steady-state control force remains almost unchanged. In comparison to the control stroke, the control speed has less influence on the maximum control force. The findings of this study can provide a theoretical foundation for the design of the parafoil control rope and the selection of servo motor.
1 | 宋旭民, 程文科, 彭勇, 等. 先进的精确空投系统[J]. 航天返回与遥感, 2004, 25(1): 6-10. |
SONG X M, CHENG W K, PENG Y, et al. Advanced precision airborne delivery systems[J]. Spacecraft Recovery & Remote Sensing, 2004, 25(1): 6-10 (in Chinese). | |
2 | 于成果, 李良春. 精确空投模式分析[J]. 兵工自动化, 2007, 26(11): L05, L07. |
YU C G, LI L C. Analysis of accurate airdrop mode[J]. Ordnance Industry Automation, 2007, 26(11): L05, L07 (in Chinese). | |
3 | RAKESH R, HARIKUMAR R. Autonomous airdrop system using small-scale parafoil[C]∥2019 International Conference on Computer Communication and Informatics (ICCCI). Piscataway: IEEE Press, 2019: 1-6. |
4 | ELLIS A T, WHITEHEAD S, MAHFOUF M. An investigation in to an un-powered, return to base platform form high altitudes[C]∥57th International Astronautical Congress. Reston: AIAA, 2006. |
5 | 王林, 马坤昌, 刘琦. 遥控空投系统研究[J]. 测控技术, 2003, 22(12): 8-9, 12. |
WANG L, MA K C, LIU Q. Research on remote control of the airdropping system[J]. Measurement & Control Technology, 2003, 22(12): 8-9, 12 (in Chinese). | |
6 | WILLEMSEN E, ROZENDAL D, HOLLESTELLE P, et al. The FASTWing project: Wind tunnel tests, realization and results[C]∥18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2005. |
7 | GEIGER R H, WAILES W K. Advanced recovery systems wind tunnel test report: G3/02 0302483[R]. Washington, D.C.: NASA, 1990. |
8 | BERLAND J C, DUNKER S, GEORGE S, et al. Development of a low cost 10, 000 lb capacity ram-air parachute, DRAGONFLY program[C]∥18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2005. |
9 | MURRAY J E. Further development and flight test of an autonomous precision landing system using a parafoil[C]∥Biennial Flight Test Conference. Reston: AIAA, 1994. |
10 | 王松松, 赵敏, 李宇辉. 翼伞测控系统的设计与实验[J]. 机械制造与自动化, 2021, 50(2): 227-229. |
WANG S S, ZHAO M, LI Y H. Design and experiment of parafoil measurement and control system[J]. Machine Building & Automation, 2021, 50(2): 227-229 (in Chinese). | |
11 | COLEMAN J, AHMAD H, TOAL D. Development and testing of a control system for the automatic flight of tethered parafoils[J]. Journal of Field Robotics, 2017, 34(3): 519-538. |
12 | GOODRICK T. Comparison of simulation and experimental data for a gliding parachute in dynamic flight[C]∥7th Aerodynamic Decelerator and Balloon Technology Conference. Reston: AIAA, 1981. |
13 | 张顺玉, 秦子增, 张晓今. 可控翼伞气动力及雀降操纵力仿真计算[J]. 国防科技大学学报, 1999(3): 24-27. |
ZHANG S Y, QIN Z Z, ZHANG X J. The calculation of aerodynamics and flare control force for controlled parafoil[J]. Journal of National University of Defense Technology, 1999(3): 24-27 (in Chinese). | |
14 | 辛久元. 翼伞空投系统伞绳伺服控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2014: 29-30. |
XIN J Y. Research on parachute rope servo control of parachute airdrop system[D].Harbin: Harbin Engineering University, 2014: 29-30 (in Chinese). | |
15 | BENNEY R, STEIN K, LEONARD J, et al. Current 3-D structural dynamic finite element modeling capabilities[C]∥Proceedings of the 14th Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 1997. |
16 | ACCORSI M, LEONARD J, BENNEY R, et al. Structural modeling of parachute dynamics[J]. AIAA Journal, 2000, 38(1): 139-146. |
17 | TANG W, JOHARI H. Deformation of a ram-air canopy due to control line retraction[C]∥Proceedings of the 24th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2017. |
18 | JOHARI H, TANG W. In-plane stresses on a ram-air canopy due to control line pull[C]∥26th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2022. |
19 | KALRO V, GARRARD W, TEZDUYAR T, et al. Parallel finite element simulation of the flare maneuver of large ram-air parachutes[C]∥14th Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 1997. |
20 | TEZDUYAR T, KALRO V, GARRARD W. Advanced computational methods for 3D simulation of parafoils[C]∥15th Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 1999. |
21 | 郭一鸣, 闫建国, 邢小军, 等. 变形翼伞回收系统的建模与分析[J]. 西北工业大学学报, 2020, 38(5): 952-958. |
GUO Y M, YAN J G, XING X J, et al. Modeling and analysis of deformed parafoil recovery system[J]. Journal of Northwestern Polytechnical University, 2020, 38(5): 952-958 (in Chinese). | |
22 | ORTEGA E, FLORES R, PONS-PRATS J. Ram-air parachute simulation with panel methods and staggered coupling[J]. Journal of Aircraft, 2016, 54(2): 807-814. |
23 | LOLIES T, CHARLOTTE M, GOURDAIN N. A fluid structure interaction methodology to design paragliders and parachutes[C]∥26th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2022. |
24 | ZHU H, SUN Q L, TAO J, et al. Fluid-structure interaction simulation for performance prediction and design optimization of parafoils[J]. Engineering Applications of Computational Fluid Mechanics, 2023, 17(1): 2194359. |
25 | ZHU H, SUN Q L, LIU X F, et al. Fluid-structure interaction-based aerodynamic modeling for flight dynamics simulation of parafoil system[J]. Nonlinear Dynamics, 2021, 104(4): 3445-3466. |
26 | 高兴龙, 陈钦, 张青斌, 等. 翼伞后缘偏转过程的流固耦合动力学特性[J]. 空气动力学学报, 2023, 41(5): 68-75. |
GAO X L, CHEN Q, ZHANG Q B, et al. Fluid-structure interaction dynamic characteristics of parafoil under trailing-edge deflection[J]. Acta Aerodynamica Sinica, 2023, 41(5): 68-75 (in Chinese). | |
27 | NIE S C, YU L, LI Y J, et al. Fluid structure interaction of supersonic parachute with material failure[J]. Chinese Journal of Aeronautics, 2023, 36(10): 90-100. |
28 | CHENG H, ZHANG X H, YU L, et al. Study of velocity effects on parachute inflation performance based on fluid-structure interaction method[J]. Applied Mathematics and Mechanics, 2014, 35(9): 1177-1188. |
29 | 张思宇, 余莉, 刘鑫. 翼伞充气过程的流固耦合方法数值仿真[J]. 北京航空航天大学学报, 2020, 46(6): 1108-1115. |
ZHANG S Y, YU L, LIU X. Numerical simulation of parafoil inflation process based on fluid-structure interaction method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (6): 1108-1115 (in Chinese). | |
30 | ZHANG S Y, YU L, WU Z H, et al. Numerical investigation of ram-air parachutes inflation with fluid-structure interaction method in wind environments[J]. Aerospace Science and Technology, 2021, 109: 106400. |
/
〈 |
|
〉 |