固体力学与飞行器总体设计

火箭着陆段能量管理与轨迹优化技术

  • 刁尹 ,
  • 张智 ,
  • 彭越 ,
  • 李杨 ,
  • 张博戎 ,
  • 张志国
展开
  • 1.北京宇航系统工程研究所,北京 100076
    2.中国运载火箭技术研究院,北京 100076
E-mail: pengyue@163.com

收稿日期: 2023-09-22

  修回日期: 2023-11-21

  录用日期: 2024-02-27

  网络出版日期: 2024-03-21

Energy management and trajectory optimization technology for rocket landing

  • Yin DIAO ,
  • Zhi ZHANG ,
  • Yue PENG ,
  • Yang LI ,
  • Borong ZHANG ,
  • Zhiguo ZHANG
Expand
  • 1.Beijing Institute of Astronautical Systems Engineering,Beijing  100076,China
    2.China Academy of Launch Vehicle Technology,Beijing  100076,China
E-mail: pengyue@163.com

Received date: 2023-09-22

  Revised date: 2023-11-21

  Accepted date: 2024-02-27

  Online published: 2024-03-21

摘要

垂直回收火箭返回着陆段发动机推力与气动力高度耦合,火箭着陆可行性与安全性不仅取决于轨迹终端位置、速度和姿态偏差,还取决于初始姿态偏差与着陆能量的控制能力。针对带有发动机起动段与喷流影响下气动力变化的复杂动态模型轨迹规划问题,通过在起动段采用多项式制导方法以及在推力节流调整段采用解析初值-序列凸优化方法进行分段轨迹在线规划;为消除分段求解模型差异带来的切换姿态角跳变,利用五次多项式形式推导得到含初始姿态角约束的解析初值参考剖面;然后通过对推力角与轨迹倾斜角度约束的动态调整,以及引入偏差松弛项,将终端质量约束添加到优化性能指标函数中,利用序列凸化迭代方法完成对具有终端位置、速度、姿态和指定质量约束的优化问题求解。结果表明: 所提方法相较于传统多项式或凸优化方法,在约束数量与精度指标方面具有优势,在组合偏差条件下能够满足准确的终端位置、速度和终端质量约束,终端姿态角偏差<1.5°,同时在线规划平均耗时<1 s,具有较好的工程应用前景,可为我国新一代可重复使用载人运载火箭的相关研制工作提供一定的参考。

本文引用格式

刁尹 , 张智 , 彭越 , 李杨 , 张博戎 , 张志国 . 火箭着陆段能量管理与轨迹优化技术[J]. 航空学报, 2024 , 45(15) : 229634 -229634 . DOI: 10.7527/S1000-6893.2024.29634

Abstract

The engine thrust and aerodynamic forces are highly coupled in vertical recovery rocket landing, and the rocket feasibility and safety depend on not only the trajectory terminal position, velocity and attitude deviation, but also the initial attitude deviation and the control accuracy of the landing energy. Aiming at the complex dynamic model trajectory planning with aerodynamic changes under the influence of the engine starting section and jet stream, the segmented trajectory online planning is conducted by adopting the polynomial guidance method in the starting section and the analytical initial value-sequential convex optimization method in the thrust throttling adjustment section. To eliminate the jumps of the switching attitude angle caused by the difference of segmented solving models, a quintuple polynomial form was used to obtain the analytical initial value reference profile with the constraints of the initial attitude angle. Then, through the dynamic adjustment of the thrust angle and trajectory tilt angle constraints as well as the introduction of a deviation relaxation term, the terminal mass constraint was added to the optimization performance index function, and the optimization problem with constraints on the terminal position, velocity, attitude, and specified mass was completed using the sequence-convex iterative method. The results show that the proposed method has advantages in accuracy index and number of constraints compared with the traditional polynomial or convex optimization methods. Capable of achieving accurate terminal position, velocity and terminal mass constraints under the combination of deviation conditions, with the terminal attitude angle deviation less than 1.5°, and the average time consumed for online planning less than 1 s, it has a good engineering application prospect and can provide reference for the development of China’s new generation of reusable manned launch vehicles.

参考文献

1 何巍, 牟宇, 朱海洋, 等. 下一代主力运载火箭发展思考[J]. 宇航总体技术20237(2): 1-12.
  HE W, MOU Y, ZHU H Y, et al. Reflections on the development of next generation main launch vehicle[J]. Astronautical Systems Engineering Technology20237(2): 1-12 (in Chinese).
2 张兵, 沈丹, 张志国, 等. 长征系列运载火箭飞行智能化发展路线研究[J]. 导弹与航天运载技术2021(1): 7-11.
  ZHANG B, SHEN D, ZHANG Z G, et al. The intelligent flight roadmap of Long March Launch Vehicle[J]. Missiles and Space Vehicles2021(1): 7-11 (in Chinese).
3 高朝辉, 张普卓, 刘宇, 等. 垂直返回重复使用运载火箭技术分析[J]. 宇航学报201637(2): 145-152.
  GAO Z H, ZHANG P Z, LIU Y, et al. Analysis of vertical landing technique in reusable launch vehicle[J]. Journal of Astronautics201637(2): 145-152 (in Chinese).
4 宋征宇, 蔡巧言, 韩鹏鑫, 等. 重复使用运载器制导与控制技术综述[J]. 航空学报202142(11): 525050.
  SONG Z Y, CAI Q Y, HAN P X, et al. Review of guidance and control technologies for reusable launch vehicles[J]. Acta Aeronautica et Astronautica Sinica202142(11): 525050 (in Chinese).
5 KLUMPP A R. Apollo lunar descent guidance[J]. Automatica (Journal of IFAC)197410(2): 133-146.
6 张洪华, 关轶峰, 黄翔宇, 等. 嫦娥三号着陆器动力下降的制导导航与控制[J]. 中国科学: 技术科学201444(4): 377-384.
  ZHANG H H, GUAN Y F, HUANG X Y, et al. Guidance navigation and control for Chang’E-3 powered descent[J]. Scientia Sinica (Technologica)201444(4): 377-384 (in Chinese).
7 MARTIN M S, MENDECK G F, BRUGAROLAS P B, et al. In-flight experience of the Mars Science Laboratory guidance, navigation, and control system for entry, descent, and landing[J]. CEAS Space Journal20157(2): 119-142.
8 韦常柱, 琚啸哲, 徐大富, 等. 垂直起降重复使用运载器返回制导与控制[J]. 航空学报201940(7): 322782.
  WEI C Z, JU X Z, XU D F, et al. Guidance and control for return process of vertical takeoff vertical landing reusable launching vehicle[J]. Acta Aeronautica et Astronautica Sinica201940(7): 322782 (in Chinese).
9 LI Y, CHEN W C, ZHOU H, et al. Conjugate gradient method with pseudospectral collocation scheme for optimal rocket landing guidance[J]. Aerospace Science and Technology2020104: 105999.
10 ZHANG B J, LIU Z C, LIU G. High-precision adaptive predictive entry guidance for vertical rocket landing[J]. Journal of Spacecraft and Rockets201956(6): 1735-1741.
11 SAGLIANO M, HEIDECKER A, MACéS HERNáNDEZ J, et al. Onboard guidance for reusable rockets: Aerodynamic descent and powered landing:AIAA-2021-0862[R]. Reston: AIAA, 2021.
12 WANG J B, LI H X, CHEN H B. An iterative convex programming method for rocket landing trajectory optimization[J]. The Journal of the Astronautical Sciences202067(4): 1553-1574.
13 ACIKMESE B, PLOEN S R. Convex programming approach to powered descent guidance for Mars landing[J]. Journal of Guidance, Control, and Dynamics200730(5): 1353-1366.
14 王劲博. 可重复使用运载火箭在线轨迹优化与制导方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 40-44.
  WANG J B. Research on online trajectory optimization and guidance methods for reusable rocket[D].Harbin: Harbin Institute of Technology, 2019: 40-44 (in Chinese).
15 张志国, 马英, 耿光有, 等. 火箭垂直回收着陆段在线制导凸优化方法[J]. 弹道学报201729(1): 9-16.
  ZHANG Z G, MA Y, GENG G Y, et al. Convex optimization method used in the landing-phase on-line guidance of rocket vertical recovery[J]. Journal of Ballistics201729(1): 9-16 (in Chinese).
16 WANG J B, CUI N G, WEI C Z. Optimal rocket landing guidance using convex optimization and model predictive control[J]. Journal of Guidance, Control, and Dynamics201942(5): 1078-1092.
17 郭杰, 相岩, 王肖, 等. 基于hp伪谱同伦凸优化的火箭垂直回收在线轨迹规划方法[J]. 宇航学报202243(5): 603-614.
  GUO J, XIANG Y, WANG X, et al. Online trajectory planning method for rocket vertical recovery based on hp pseudospectral homotopic convex optimization[J]. Journal of Astronautics202243(5): 603-614 (in Chinese).
18 施棋,齐瑞云,佘宇琛,等.重复使用火箭垂直着陆段在线轨迹优化方法[J/OL].北京航空航天大学学报,(2023-09-08)[2023-09-22]. .
  SHI Q, QI R Y, SHE Y C, et al. Online trajectory optimization method for vertical landing phase of reusable launch vehicle[J/OL]. Journal of Beijing University of Aeronautics and Astronautics,(2023-09-08)[2023-09-22]. (in Chinese).
19 宋雨, 张伟, 苗新元, 等. 可回收火箭动力着陆段在线制导算法[J]. 清华大学学报(自然科学版)202161(3): 230-239.
  SONG Y, ZHANG W, MIAO X Y, et al. Onboard guidance algorithm for the powered landing phase of a reusable rocket[J]. Journal of Tsinghua University (Science and Technology)202161(3): 230-239 (in Chinese).
20 安泽, 熊芬芬, 梁卓楠. 基于偏置比例导引与凸优化的火箭垂直着陆制导[J]. 航空学报202041(5): 323606.
  AN Z, XIONG F F, LIANG Z N. Landing-phase guidance of rocket using bias proportional guidance and convex optimization[J]. Acta Aeronautica et Astronautica Sinica202041(5): 323606 (in Chinese).
21 吴杰, 张成, 李淼, 等. 基于凸优化和LQR的火箭返回轨迹跟踪制导[J]. 北京航空航天大学学报202248(11): 2270-2280.
  WU J, ZHANG C, LI M, et al. Rocket return trajectory tracking guidance based on convex optimization and LQR[J]. Journal of Beijing University of Aeronautics and Astronautics202248(11): 2270-2280 (in Chinese).
22 LI Y, WEI C Z, HE Y F, et al. A convex approach to trajectory optimization for boost back of vertical take-off/vertical landing reusable launch vehicles[J]. Journal of the Franklin Institute2021358(7): 3403-3423.
23 姜雪梅, 朱博灵, 赵吉松, 等. 垂直起降运载火箭返回着陆轨迹在线优化研究[J]. 飞行力学202341(1): 63-70.
  JIANG X M, ZHU B L, ZHAO J S, et al. Online trajectory optimization for descent and landing of vertical takeoff and landing launch rocket[J]. Flight Dynamics202341(1): 63-70 (in Chinese).
24 WANG J B, MA H J, LI H X, et al. Real-time guidance for powered landing of reusable rockets via deep learning[J]. Neural Computing and Applications202335(9): 6383-6404.
25 程川, 刘阳, 王吉飞, 等. 反向喷流对运载火箭返回段气动特性影响研究[J]. 宇航学报202344(3): 379-388.
  CHENG C, LIU Y, WANG J F, et al. Investigation of reverse jet effects on aerodynamic characteristics of returned launch vehicle[J]. Journal of Astronautics202344(3): 379-388 (in Chinese).
文章导航

/