流体力学与飞行力学

填充流量和当量比对障碍物管道内火焰加速的影响

  • 张浩天 ,
  • 张永辉 ,
  • 马鹏飞 ,
  • 王云 ,
  • 范玮
展开
  • 1.西北工业大学 动力与能源学院,西安 710129 2.西安航空学院 飞行器学院,西安 710077
    3.西北工业集团有限公司,西安 710043
.E-mail: weifan419@nwpu.edu.cn

收稿日期: 2024-07-15

  修回日期: 2024-08-01

  录用日期: 2024-08-26

  网络出版日期: 2024-09-02

基金资助

国家自然科学基金(52176133)

Effects of filling flow rate and equivalence ratio on flame acceleration in an obstacle channel

  • Haotian ZHANG ,
  • Yonghui ZHANG ,
  • Pengfei MA ,
  • Yun WANG ,
  • Wei FAN
Expand
  • 1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710129,China
    2.School of Aircraft,Xi’an Aeronautical Institute,Xi’an 710077,China
    3.Northwest Industries Group Co. ,Ltd,Xi’an 710043,China

Received date: 2024-07-15

  Revised date: 2024-08-01

  Accepted date: 2024-08-26

  Online published: 2024-09-02

Supported by

National Natural Science Foundation of China(52176133)

摘要

火焰在爆震室内的传播特性对缓燃向爆震转变过程至关重要。为探究填充流量和当量比对安装矩形障碍物的爆震室内火焰加速的影响,采用乙烯为燃料、空气为氧化剂,基于高速纹影技术和化学自发光技术,通过实验研究的方式,获得了不同填充流量和当量比的纹影图像和火焰自发光图像。实验结果表明,火焰在矩形障碍物管道内传播时可分为缓慢加速和振荡加速两个阶段;适度增加填充流量会加速层流火焰向湍流火焰转变,显著促进火焰加速过程;但进一步增加填充流量并不会持续加速火焰传播,最大火焰传播速度在650~700 m/s范围内波动;当反应物当量比为1时,火焰加速效果明显优于偏贫或偏富的工况;随着反应物填充流量的增大,当量比对火焰加速的影响逐渐减弱。

本文引用格式

张浩天 , 张永辉 , 马鹏飞 , 王云 , 范玮 . 填充流量和当量比对障碍物管道内火焰加速的影响[J]. 航空学报, 2025 , 46(4) : 130940 -130940 . DOI: 10.7527/S1000-6893.2024.30940

Abstract

The propagation characteristics of flame in an obstructed tube are crucial to the transition from slow combustion to detonation. To explore the influence of filling flow rate and equivalence ratio on flame acceleration in a rectangular obstructed tube, ethylene was used as fuel, and air was used as oxidant. Based on high-speed schlieren technology and chemiluminescence technology, schlieren images and flame chemiluminescence images with different filling flow rates and equivalence ratios were obtained through experimental research. The experimental results show that the flame propagation in a rectangular channel with obstacles can be divided into two stages: slow acceleration and oscillating acceleration. Moderately increasing the filling flow rate will accelerate the transition from laminar flame to turbulent flame, and significantly promote the flame acceleration process. However, further increasing the filling flow rate will not continuously accelerate the flame propagation, and the maximum flame propagation speed fluctuates in the range of 650 m/s to 700 m/s. When the equivalence ratio of reactants is 1, the flame acceleration effect is obviously better than that of lean or rich conditions. As the filling flow rate increases, the effect of equivalence ratio on flame acceleration gradually weakens.

参考文献

1 严传俊, 范玮. 燃烧学[M]. 西安: 西北工业大学出版社, 2005: 1-2.
  YAN C J, FAN W. Combustion[M]. Xi’an: Northwestern Polytechnical University Press, 2005: 1-2 (in Chinese).
2 LEE J H S. The detonation phenomenon[M]. Cambridge: Cambridge University Press, 2008: 1-3.
3 KUO K K. Principles of combustion[M]. Hoboken: Wiley-Interscience, 2005: 357-361.
4 严传俊, 范玮. 脉冲爆震发动机原理及关键技术[M]. 西安: 西北工业大学出版社, 2005: 1-2.
  YAN C J, FAN W. Principle and key technology of pulse detonation engine[M]. Xi’an: Northwestern Polytechnical University Press, 2005: 1-2 (in Chinese).
5 林伟. 爆震燃烧热射流起爆机理研究[D]. 长沙: 国防科技大学, 2010.
  LIN W. Study on initiation mechanism of detonation combustion hot jet[D]. Changsha: National University of Defense Technology, 2010 (in Chinese).
6 KUZNETSOV M, ALEKSEEV V, MATSUKOV I, et al. DDT in a smooth tube filled with a hydrogen-oxygen mixture[J]. Shock Waves200514(3): 205-215.
7 COATES A M, MATHIAS D L, CANTWELL B J. Numerical investigation of the effect of obstacle shape on deflagration to detonation transition in a hydrogen-air mixture[J]. Combustion and Flame2019209: 278-290.
8 XIAO H H, ORAN E S. Shock focusing and detonation initiation at a flame front[J]. Combustion and Flame2019203: 397-406.
9 NEW T, PANICKER P, CHUI K, et al. Experimental study on deflagration-to-detonation transition enhancement methods in a PDE[C]∥Proceedings of the 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006.
10 MEYER T, HOKE J, BROWN M, et al. Experimental study of deflagration-to-detonation enhancement techniques in a H2/air pulsed-detonation engine[C]∥38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2002.
11 LEE S Y, WATTS J, SARETTO S, et al. Deflagration to detonation transition processes by turbulence-generating obstacles in pulse detonation engines[J]. Journal of Propulsion and Power200420(6): 1026-1036.
12 JOHANSEN C, CICCARELLI G. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel[J]. Combustion and Flame2009156(2): 405-416.
13 JOHANSEN C, CICCARELLI G. Numerical simulations of the flow field ahead of an accelerating flame in an obstructed channel[J]. Combustion Theory and Modelling201014(2): 235-255.
14 DEAN A. A review of PDE development for propulsion applications[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
15 CHAPIN D, TANGIRALA V, RASHEED A, et al. Detonation initiation in moving ethylene-air mixtures at elevated temperature and pressure[C]∥42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2006.
16 GRAY J A, MOECK J P, PASCHEREIT C O. Effect of initial flow velocity on the flame propagation in obstructed channels[C]∥53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015.
17 张永辉, 张启斌, 赵明皓,等. 混合物填充速度对火焰加速及DDT转变特性实验[J]. 航空动力学报202439 (9): 263-272.
  ZHANG Y H, ZHANG Q B, ZHAO M H, et al. Experimental study on the effect of mixture filling rate on flame acceleration and DDT transition characteristics[J]. Journal of Aerospace Power202439 (9): 263-272 (in Chinese).
18 WANG Y, DONG R X, SHEN S, et al. Effect of fill flow rate on flame acceleration in a detonation channel[J]. Aerospace Science and Technology2021117: 106936.
19 DAYMA G, HALTER F, DAGAUT P. New insights into the peculiar behavior of laminar burning velocities of hydrogen-air flames according to pressure and equivalence ratio[J]. Combustion and Flame2014161(9): 2235-2241.
20 KAMAL M M, BARLOW R S, HOCHGREB S. Conditional analysis of turbulent premixed and stratified flames on local equivalence ratio and progress of reaction[J]. Combustion and Flame2015162(10): 3896-3913.
21 NGUYEN V B, LI J M, CHANG P H, et al. Effect of ethylene fuel/air equivalence ratio on the dynamics of deflagration-to-detonation transition and detonation propagation process[J]. Combustion Science and Technology2018190(9): 1630-1658.
22 何建男. 微尺度爆震燃烧的基础研究与微动力推进的初步探索[D]. 西安: 西北工业大学, 2018.
  HE J N. Basic research on micro-scale detonation combustion and preliminary exploration of micro-power propulsion[D]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese).
23 LANDAU L. On the theory of slow combustion[M]∥Dynamics of Curved Fronts. Amsterdam: Elsevier, 1988: 403-411.
24 JOULIN G, CLAVIN P. Linear stability analysis of nonadiabatic flames: Diffusional-thermal model[J]. Combustion and Flame197935: 139-153.
25 SIVASHINSKY G I. Diffusional-thermal theory of cellular flames[J]. Combustion Science and Technology197715(3-4): 137-145.
文章导航

/