薄膜增阻球折叠优化设计与展开分析
收稿日期: 2024-06-20
修回日期: 2024-07-29
录用日期: 2024-08-21
网络出版日期: 2024-09-02
基金资助
国家级项目(KJSP2020010301);国家自然科学基金(12232003)
Folding optimization design and deployment analysis for film drag balloon
Received date: 2024-06-20
Revised date: 2024-07-29
Accepted date: 2024-08-21
Online published: 2024-09-02
Supported by
National Level Project(KJSP2020010301);National Natural Science Foundation of China(12232003)
增阻球是实现低轨航天器寿命末期离轨的主要装置之一,薄膜球体在使用之前需要长期封装在狭小的空间中,因此如何实现高密度低损伤折叠以及平滑充气展开是该装置使用的关键。考虑到增阻球大多是由一定数量的单瓣粘接而成,因此首先提出考虑形状稳定性和经济性的最优瓣数构型设计方法。进一步针对单瓣结构提出对称并联式z型折叠方案,并给出了该方案的折叠体积和损伤量化方法。然后,为增大折展比,降低折痕损伤,给出了增阻球优化折叠方案,并对直径6 m增阻球进行了仿真验证。基于此方案,分析了瓣数构型、充气速度以及球体内部初始压力和温度等因素对增阻球平滑展开的影响。结果表明,该折叠方案能够实现增阻球的高密度低损伤折叠,此外,通过增加瓣数构型、减缓充气速度、避免过度抽真空以及减少太阳光直射等方法,可以有效减缓增阻球展开过程中的姿态振荡,加快其达到稳定状态。
杨科莹 , 矫宁 , 张若楠 . 薄膜增阻球折叠优化设计与展开分析[J]. 航空学报, 2025 , 46(1) : 630849 -630849 . DOI: 10.7527/S1000-6893.2024.30849
The drag balloon is one of the primary devices for deorbiting of low Earth orbit spacecraft at the end of their life. Since the thin membrane sphere must be stored in a confined space for an extended period before use, achieving high-density and low-damage folding and smooth inflation and deployment is crucial for its operation. Considering the drag balloon is mostly composed of a certain number of bonded valves, an optimal valve configuration design method that considers shape stability and cost efficiency is firstly proposed. Furthermore, for the single petal structure, a symmetrical parallel z-type folding scheme is proposed, and methods for quantifying the folded volume and damage are provided. Then, to increase the folding-deployment ratio and reduce crease damage, an optimized folding scheme for the drag balloon is presented, and simulation of a sphere of 6-meter diameter is conducted. Based on this scheme, the effects of valve configuration, inflation speed, and initial internal pressure and temperature on the smooth deployment of the drag balloon are analyzed. The results show that the proposed folding scheme can achieve high-density and low-damage folding of the drag balloon. Additionally, by increasing the number of valves, slowing down the inflation speed, avoiding excessive vacuum, and reducing direct sunlight exposure, the attitude oscillation during the deployment process can be effectively mitigated, speeding up the attainment of a stable state.
1 | ZHANG J R, YUAN Y R, YANG K Y, et al. Long-term evolution of the space environment considering constellation launches and debris disposal[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 6124-6137. |
2 | ZHANG J R, ZHANG R N, YANG K Y. Attitude stability analysis and configuration design of pyramid drag sail for deorbit missions[J]. Journal of Aerospace Engineering, 2022, 35(6): 04022084. |
3 | NOCK K, GATES K, AARON K, et al. Gossamer orbit lowering device (GOLD) for safe and efficient de-orbit[C]∥ Proceedings of the AIAA/AAS Astrodynamics Specialist Conference. Reston: AIAA, 2010. |
4 | RODDY M, HODGES H, ROE L, et al. Solid state gas generator for small satellite deorbiter[C]∥ 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). Piscataway: IEEE Press, 2017: 644-649. |
5 | 张义. 超轻充气自维型增阻球设计与分析[D]. 哈尔滨: 哈尔滨工业大学, 2019: 37-50. |
ZHANG Y. Design and analysis of ultra-light inflatable self-shape-maintenance drag balloon [D]. Harbin: Harbin Institute of Technology, 2019: 37-50 (in Chinese). | |
6 | 曹生珠, 王虎, 张凯锋, 等. 柔性气阻球帆主动离轨装置及其在轨飞行验证[J]. 空间碎片研究, 2021, 21(3): 29-33. |
CAO S Z, WANG H, ZHANG K F,et al. Active deorbit device of membrane spherical sail and its flight verification[J]. Space Debris Research, 2021, 21(3): 29-33 (in Chinese). | |
7 | 刘世毅, 王立武. 折纸技术在空间结构中的应用和发展[J]. 航天返回与遥感, 2020, 41(6): 114-128. |
LIU S Y, WANG L W. Development and application of origami in space structure[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(6): 114-128 (in Chinese). | |
8 | HINKLE J, LIN J, WATSON J. Deployment testing of an expandable lunar habitat[C]∥ Proceedings of the AIAA SPACE 2009 Conference & Exposition. Reston: AIAA, 2009. |
9 | 卫剑征, 张义, 侯一心, 等. 全向增阻离轨的充气薄膜球设计与性能分析[J]. 清华大学学报(自然科学版), 2023, 63(3): 302-310. |
WEI J Z, ZHANG Y, HOU Y X, et al. Design and performance analysis of an inflatable film balloon for drag deorbiting[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(3): 302-310 (in Chinese). | |
10 | 张成龙, 陈南梁, 耿奕, 等. 高密经编浮空器蒙皮材料的制备与力学行为研究[J]. 复合材料科学与工程, 2020(9): 42-47. |
ZHANG C L, CHEN N L, GENG Y, et al. Study on preparation and mechanical behavior of high-density warp knitted aerostat envelope material[J]. Composites Science and Engineering, 2020(9): 42-47 (in Chinese). | |
11 | OKUIZUMI N, YAMAMOTO T. Centrifugal deployment of membrane with spiral folding: Experiment and simulation[J]. Journal of Space Engineering, 2009, 2(1): 41-50. |
12 | WANG C Y. Elasto-plastic folding of thin sheets[J]. Acta Mechanica, 1987, 67(1): 139-150. |
13 | SATOU Y, FURUYA H. Mechanical properties of Z-fold membrane under elasto-plastic deformation[J]. Journal of Space Engineering, 2011, 4(1): 14-26. |
14 | 陈丽. 薄膜抛物面反射器的圆柱式折叠研究[D]. 哈尔滨: 哈尔滨工业大学, 2007: 52-64. |
CHEN L. Cylindrical fold study of a large in-space deployable membrane parabolic reflector[D]. Harbin: Harbin Institute of Technology, 2007: 52-64 (in Chinese). | |
15 | 唐愉真, 刘超, 肖洪, 等. 可展薄膜的Miura弹性折痕建模与分析[J]. 哈尔滨工业大学学报, 2023, 55(1): 1-11. |
TANG Y Z, LIU C, XIAO H, et al. Modeling and analysis of miura elastic creases for deployable membrane[J]. Journal of Harbin Institute of Technology, 2023, 55(1): 1-11 (in Chinese). | |
16 | 卜亚楼, 蔡榕, 杨燕初, 等. 南瓜型超压气球展开稳定性研究[J]. 计算机仿真, 2023, 40(5): 56-63. |
BU Y L, CAI R, YANG Y C, et al. Study on stability of pumpkin shape super pressure balloon deployment[J]. Computer Simulation, 2023, 40(5): 56-63 (in Chinese). | |
17 | 杨宝生, 姜毅, 杨哩娜. 基于粒子法的可变边界柔性气缸弹射研究[J]. 振动与冲击, 2023, 42(10): 43-50+154. |
YANG B S, JIANG Y, YANG L N. Research on flexible cylinder ejection with variable boundary based on corpuscular method[J]. Journal of Vibration and Shock, 2023, 42(10): 43-50+154 (in Chinese). | |
18 | 郭敏. 充气式减速器的折叠充气展开动力学数值计算[D]. 大连: 大连理工大学, 2022: 17-23. |
GUO M. Numerical analysis of folding and deployment dynamics for inflatable decelerator[D].Dalian: Dalian University of Technology, 2022: 17-23 (in Chinese) . | |
19 | SUN J L, JIN D P, HU H Y. Deployment dynamics and topology optimization of a spinning inflatable structure[J]. Acta Mechanica Sinica, 2022, 38(10): 122100. |
20 | 梁鹏, 薛齐文, 张岩, 等. 折叠球形气囊展开过程仿真[J]. 航空工程进展, 2019, 10(4): 562-568. |
LIANG P, XUE Q W, ZHANG Y, et al. Simulation of the expansion process of folded spherical airbag[J]. Advances in Aeronautical Science and Engineering, 2019, 10(4): 562-568 (in Chinese). | |
21 | SMITH M S, RAINWATER E L. Optimum designs for superpressure balloons[J]. Advances in Space Research, 2004, 33(10): 1688-1693. |
22 | JIAO N, YANG K Y, ZHANG J R. Research on folding and inflation process of the drag balloon deorbit device[C]∥ AOPC 2023: Laser Technology and Applications and Optoelectronic Devices and Integration. SPIE, 2023: 194-204. |
23 | 李懿德, 恽卫东, 郑琦, 等. 国内最大离轨帆成功在轨展开[N].科技日报, (2022-07-05)[2023-08-12]. |
LI Y D, YUN W D, ZHENG Q, et al. China’s largest deorbit sail successfully unfolds in orbit[N]. Science and Technology Daily, (2022-07-05)[2023-08-12] (in Chinese). |
/
〈 |
|
〉 |