固体力学与飞行器总体设计

地月三体系统新型太阳帆周期轨道设计与分析

  • 安诗宇 ,
  • 刘明 ,
  • 李化义 ,
  • 吴凡
展开
  • 哈尔滨工业大学 卫星技术研究所,哈尔滨 150001
.E-mail: mingliu23@hit.edu.cn

收稿日期: 2024-06-17

  修回日期: 2024-08-05

  录用日期: 2024-08-27

  网络出版日期: 2024-09-02

基金资助

国家自然科学基金(62303138);上海航天科技创新基金(SAST2021-030);黑龙江省头雁计划;广东省基础与应用基础研究重大项目(2019B030302001)

Design and applications of novel periodic orbits with solar sail in Earth-Moon system

  • Shiyu AN ,
  • Ming LIU ,
  • Huayi LI ,
  • Fan WU
Expand
  • Research Center of Satellite Technology,Harbin Institude of Technology,Harbin 150001,China

Received date: 2024-06-17

  Revised date: 2024-08-05

  Accepted date: 2024-08-27

  Online published: 2024-09-02

Supported by

National Natural Science Foundation of China(62303138);Shanghai Aerospace Science and Technology Program(SAST2021-030);Heilongjiang Touyan Team;Guangdong Major Project of Basic and Applied Basic Research(2019B030302001)

摘要

地月三体系统中的周期轨道在深空探测中具有重要的理论价值和工程意义。太阳帆航天器不需要消耗推进剂,在长期的空间任务中具有很大的潜力。在地月三体系统中增加太阳帆推进,将在地月系统中开辟更多有应用价值的轨道。在太阳帆地月圆型限制性三体问题的简化非自治动力学模型下,引入了一种新的太阳帆指向律,使得太阳帆加速度与帆的状态向量相关,在此条件下,推导了系统的雅可比矩阵。将该指向律应用到近直线Halo轨道中,结合改进的微分修正法和太阳帆加速度延拓寻找新的轨道族。数值仿真验证了该指向律和该数值计算方法在非自治系统周期轨道设计中的有效性。分析表明,建立的新型太阳帆周期轨道族可用于月球照明和月球高纬度地区观测。最后,将周期轨道迁移到非共面双椭圆扰动模型中,通过二级微分修正方法得到了扰动下的拟周期轨道,分析表明其照明性能和覆盖性能可以保持。进一步计算了不同初始时刻对应的拟周期轨道,分析表明当地月质心和月球越接近其轨道的近心点时,扰动因素对轨道的影响越大。

本文引用格式

安诗宇 , 刘明 , 李化义 , 吴凡 . 地月三体系统新型太阳帆周期轨道设计与分析[J]. 航空学报, 2025 , 46(4) : 230828 -230828 . DOI: 10.7527/S1000-6893.2024.30828

Abstract

Periodic orbits in the Earth-Moon three-body system hold significant theoretical and engineering values for deep space exploration. Solar sail spacecraft, which do not require propellant, show great potential for long-term space missions. Introducing the solar sail propulsion technology in the Earth-Moon three-body system can create more valuable orbits. In previous studies, the state transition matrices of dynamical systems are not found to include the solar sail acceleration term. In this paper, a new solar sail pointing law is proposed based on a simplified non-autonomous dynamical model for the solar sail Earth-Moon circular restricted three-body problem, making acceleration of the solar sail dependent on the sail state vector. On this basis, the Jacobian matrix of the system is derived. This pointing law is applied to the near rectilinear Halo orbit. Using an improved differential correction method in combination with a continuation on solar sail acceleration, new orbit families are generated. Numerical simulations verify the effectiveness of the pointing law and numerical computation method. Analysis shows that the newly established solar sail periodic orbit families can be used for lunar illumination and observation of high-latitude lunar regions. Finally, periodic orbits are migrated to a non-coplanar bi-elliptical perturbation model, and the quasi-periodic orbits under perturbation are obtained using the second-order differential correction method. It is shown through analysis that the orbits’ illumination and coverage performance can be maintained under perturbation. Further calculations of the quasi-periodic orbits corresponding to different initial moments indicate that the closer the Earth-Moon Barycenter (EMB) and the Moon are to the perigee of their orbits, the greater the impact of perturbative factors on the orbit is.

参考文献

1 ZHANG R Y. A review of periodic orbits in the circular restricted three-body problem[J]. Journal of Systems Engineering and Electronics202233(3): 612-646.
2 张斌, 周敬. 基于特征模型的Halo轨道维持控制[J]. 航空学报201940(11): 323206.
  ZHANG B, ZHOU J. Characteristic model-based station-keeping control for Halo orbit[J]. Acta Aeronautica et Astronautica Sinica201940(11): 323206 (in Chinese).
3 HARRISON R A, DAVIES J A, BARNES D, et al. L1 and off Sun-Earth line visible-light imaging of Earth-directed CMEs: An analysis of inconsistent observations[J]. Space Weather202321(4): e2022SW003358.
4 LO M W, WILLIAMS B G, BOLLMAN W E, et al. Genesis mission design[J]. The Journal of the Astronautical Sciences200149(1): 169-184.
5 PRUSTI T, DE BRUIJNE J H J, BROWN A G A, et al. The Gaia mission[J]. Astronomy & Astrophysics2016595: 29272.
6 SHARMA A K. James Webb space telescope[J]. Resonance202227(8): 1355-1369.
7 张立华, 熊亮, 王鹏, 等. “嫦娥4号” 中继星任务分析与系统设计[J]. 深空探测学报20185(6): 515-523.
  ZHANG L H, XIONG L, WANG P, et al. The mission analysis and system design of Chang’e-4 lunar relay communication satellite[J]. Journal of Deep Space Exploration20185(6): 515-523 (in Chinese).
8 BUCCHIONI G, LIZY-DESTREZ S, VAUJOUR T, et al. Phasing with near rectilinear Halo orbits: Design and comparison[J]. Advances in Space Research202371(5): 2449-2466.
9 谭明虎, 张科, 吕梅柏, 等. 基于大幅值Lyapunov轨道的地月转移轨道设计研究[J]. 航空学报201435(5): 1209-1215.
  TAN M H, ZHANG K, LYU M B, et al. Research on Earth-Moon transfer by using a large amplitude Lyapunov orbit[J]. Acta Aeronautica et Astronautica Sinica201435(5): 1209-1215 (in Chinese).
10 杨驰航, 符弘岚, 张皓. 远距离逆行轨道上的近距离自然及受控编队[J]. 航空学报202344(5): 326563.
  YANG C H, FU H L, ZHANG H. Natural and non-natural close formation flight on distant retrograde orbits[J]. Acta Aeronautica et Astronautica Sinica202344(5): 326563 (in Chinese).
11 MORIMOTO M Y, YAMAKAWA H, UESUGI K. Artificial equilibrium points in the low-thrust restricted three-body problem[J]. Journal of Guidance, Control, and Dynamics200730(5): 1563-1568.
12 崔乃刚, 刘家夫, 荣思远. 太阳帆航天器动力学建模与求解[J]. 航空学报201031(8): 1565-1571.
  CUI N G, LIU J F, RONG S Y. Solar sail spacecraft dynamic modeling and solving[J]. Acta Aeronautica et Astronautica Sinica201031(8): 1565-1571 (in Chinese).
13 MORI O, SHIRASAWA Y, MIMASU Y, et al. Overview of IKAROS mission[M]?∥Advances in solar sailing. Berlin, Heidelberg: Springer, 2014: 25-43.
14 VULPETTI G, JOHNSON L, MATLOFF G L. The NanoSAIL-D2 NASA mission[M]?∥Solar sails. New York: Springer, 2015: 173-178.
15 BIDDY C, SVITEK T. LightSail-1 solar sail design and qualification[C]?∥Proceedings of the 41st Aerospace Mechanisms Symposium. Pasadena, CA: Jet Propulsion Lab., National Aeronautics and Space Administration, 2012: 451-463.
16 ?ELIK O, MCINNES C R. A constellation design for orbiting solar reflectors to enhance terrestrial solar energy[J]. Acta Astronautica2024217: 145-161.
17 ?ELIK O, MCINNES C R. A generic three-dimensional model for solar energy reflected from mirrors in circular orbits[J]. Advances in Space Research202372(11): 5047-5069.
18 ?ELIK O, MCINNES C R. An analytical model for solar energy reflected from space with selected applications[J]. Advances in Space Research202269(1): 647-663.
19 SALAZAR F J T, MCINNES C R, WINTER O C. Periodic orbits for space-based reflectors in the circular restricted three-body problem[J]. Celestial Mechanics and Dynamical Astronomy2017128(1): 95-113.
20 BAOYIN H, MCINNES C R. Solar sail halo orbits at the Sun-Earth artificial L1Point[J]. Celestial Mechanics and Dynamical Astronomy200694(2): 155-171.
21 BAOYIN H, MCINNES C R. Solar sail equilibria in the elliptical restricted three-body problem[J]. Journal of Guidance, Control, and Dynamics200629(3): 538-543.
22 GONG S P, LI J F. Solar sail periodic orbits in the elliptic restricted three-body problem[J]. Celestial Mechanics and Dynamical Astronomy2015121(2): 121-137.
23 SIMO J, MCINNES C R. Solar sail orbits at the Earth-Moon libration points[J]. Communications in Nonlinear Science and Numerical Simulation200914(12): 4191-4196.
24 GONG S P, LI J F, SIMO J. Orbital motions of a solar sail around the L2 Earth-Moon libration point[J]. Journal of Guidance, Control, and Dynamics201437(4): 1349-1356.
25 OZIMEK M T, GREBOW D J, HOWELL K C. Design of solar sail trajectories with applications to lunar south pole coverage[J]. Journal of Guidance, Control, and Dynamics200932(6): 1884-1897.
26 HEILIGERS J, HIDDINK S, NOOMEN R, et al. Solar sail Lyapunov and Halo orbits in the Earth-Moon three-body problem[J]. Acta Astronautica2015116: 25-35.
27 HEILIGERS J, MACDONALD M, PARKER J S. Extension of Earth-Moon libration point orbits with solar sail propulsion[J]. Astrophysics and Space Science2016361(7): 241.
28 HEILIGERS, WAWRZYNIAK G G, CERVEN W, et al. Design and applications of solar sail periodic orbits in the non-autonomous Earth-Moon system[C]∥AAS/AIAA Astrodynamics Specialist Conference 2015. 2015.
29 HEILIGERS J, PARKER J S, MACDONALD M. Novel solar-sail mission concepts for high-latitude Earth and lunar observation[J]. Journal of Guidance, Control, and Dynamics201741(1): 212-230.
30 GáMEZ LOSADA F, HEILIGERS J. New solar-sail orbits for polar observation of the Earth and Moon[J]. Journal of Guidance, Control, and Dynamics202144(12): 2155-2171.
31 MACDONALD M, MCINNES C. Solar sail science mission applications and advancement[J]. Advances in Space Research201148(11): 1702-1716.
32 ASSADIAN N, POURTAKDOUST S H. On the quasi-equilibria of the BiElliptic four-body problem with non-coplanar motion of primaries[J]. Acta Astronautica201066(1): 45-58.
33 韦炳威. 限制性多体问题中的低能转移轨道研究[D].天津: 河北工业大学, 2017.
  WEI B W. Study of low-energy transfer trajectories in restricted multi-body problem[D]. Tianjin: Hebei University of Technology, 2017 (in Chinese).
34 ZIMOVAN E M, HOWELLK C, DAVIS D C. Near rectilinear Halo orbits and their application in cis-lunar space[C]∥3rd IAA Conference on Dynamics and Control of Space Systems; Moscow, Russia. 201720: 40.
35 HOWELL K C, PERNICKA H J. Numerical determination of Lissajous trajectories in the restricted three-body problem[J]. Celestial Mechanics198741(1): 107-124.
文章导航

/