基于特征点提取的多传感器融合机坪建图方法
收稿日期: 2024-06-07
修回日期: 2024-07-11
录用日期: 2024-08-20
网络出版日期: 2024-09-02
基金资助
国家自然科学基金(U2333205);中央高校基本科研业务费(3122022PY10)
A method for apron mapping based on feature point extraction and multi-sensor fusion
Received date: 2024-06-07
Revised date: 2024-07-11
Accepted date: 2024-08-20
Online published: 2024-09-02
Supported by
National Natural Science Foundation of China(U2333205);Fundamental Research Funds for the Central Universities(3122022PY10)
机场停机坪环境具有场景范围较大、特征点稀疏的特征,随机特征点数量的增加会导致建图失真和里程计漂移现象,基于通过平滑和映射的紧耦合雷达惯性里程计算法(LIO-SAM)进行改进,首先对激光雷达(LiDAR)和惯性测量单元(IMU)进行外参和内参标定,将激光雷达点云格式转换为Velodyne格式,并采用自适应特征点曲率计算,以确保不同距离下特征点所计算曲率的准确性,然后引入Scan-Context回环检测,提高回环效率和建图精度,最终生成高精度的停机坪环境点云地图,通过实验平台采集园区道路和模拟停机坪两组数据集,使用本文算法与主流的A-LOAM、LeGO-LOAM和LIO-SAM算法进行对比,并利用GNSS数据作为轨迹真值。结果表明,改进后的多传感器融合算法在停机坪环境下相较于原始LIO-SAM算法的绝对位姿误差均值降低了13.8%。相较于其他主流算法,本文算法的绝对位姿误差均值最低,提供了更高的建图精度,有效降低了系统的累积误差,生成的点云地图更好地还原了停机坪的真实场景。
牛国臣 , 栾向宇 . 基于特征点提取的多传感器融合机坪建图方法[J]. 航空学报, 2024 , 45(S1) : 730806 -730806 . DOI: 10.7527/S1000-6893.2024.30806
The airport apron environment features a large scene range and sparse feature points. Increased random feature points can the lead to mapping distortion and odometer drift. This paper presents improvements based on the tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping (LIO-SAM) method. Firstly, the external and internal parameter calibration of Light Detection and Ranging (LiDAR) and Inertial Measurement Unit (IMU) is conducted, the LiDAR point cloud format is converted into the Velodyne format, and adaptive feature point curvature calculation is used to obtain accurate curvature at various distances. Then, Scan-Context loop detection is introduced to enhance loop efficiency and mapping accuracy, so as to generate a high-precision apron environment point cloud map. Two datasets, park roads and a simulated apron, are collected using the experimental platform for comparison. The proposed algorithm is evaluated against the A-LOAM, LeGO-LOAM, and LIO-SAM algorithms, using GNSS data as trajectory ground truth. Results show that the improved multi-sensor fusion algorithm reduces the mean absolute pose error by 13.8% compared to the original LIO-SAM algorithm in apron environments. The proposed algorithm also has the lowest mean absolute pose error among mainstream algorithms, providing higher mapping accuracy, reducing cumulative error, and better restoring the real scene of the apron.
Key words: airport apron; LiDAR; IMU; loop detection; experimental platform; sensor fusion
1 | CHAI J H, DONG M L, SUN P, et al. 工业相机自热引起像点漂移模型与补偿方法[J]. Infrared and Laser Engineering, 2021, 50(6): 20200494. |
2 | 王冠岭,李辉,赵生捷,等. 基于“四型机场”建设目标的智慧飞行区建设研究文献综述[J]. 人工智能, 2022, (4): 8-16. |
WANG G L, LI H, ZHAO S J, et al. Literature review on the construction of intelligent flight zones based on the “Four-Type Airport” construction goals[J]. Artificial Intelligence, 2022, (4): 8-16 (in Chinese). | |
3 | 仉新, 张禹, 苏晓明. 基于启发式算法的移动机器人SLAM[J]. 中国惯性技术学报, 2018, 26(1): 45-50. |
ZHANG X, ZHANG Y, SU X M. Simultaneous localization and mapping of mobile robot based on heuristic algorithm?[J]. Journal of Chinese Inertial Technology, 2018, 26(1): 45-50 (in Chinese). | |
4 | ALSADIK B, KARAM S. The simultaneous localization and mapping (SLAM)-An overview[J]. Journal of Applied Science and Technology Trends, 2021, 2(4): 120-131. |
5 | TAKETOMI T, UCHIYAMA H, IKEDA S. Visual SLAM algorithms: A survey from 2010 to 2016[J]. IPSJ Transactions on Computer Vision and Applications, 2017, 9(1): 16. |
6 | 周治国, 曹江微, 邸顺帆. 3D激光雷达SLAM算法综述[J]. 仪器仪表学报, 2021, 41(9): 13-27. |
ZHOU Z G, CAO J W, DI S F. Overview of 3D lidar SLAM algorithms[J]. Chinese Journal of Scientific Instrument, 2021, 41(9): 13-27 (in Chinese). | |
7 | WANG H, WANG C, CHEN C L, et al. F-LOAM: Fast LiDAR odometry and mapping[C]∥2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2021: 4390-4396. |
8 | ZHANG J, SINGH S. LOAM: Lidar odometry and mapping in real-time?[J]. Robotics: Science and Systems. 2014, 2(9): 1-9.. |
9 | GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237. |
10 | SHAN T X, ENGLOT B. LeGO-LOAM: Lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2018: 4758-4765. |
11 | XU X B, ZHANG L, YANG J, et al. A review of multi-sensor fusion SLAM systems based on 3D LIDAR[J]. Remote Sensing, 2022, 14(12): 2835. |
12 | SHAN T X, ENGLOT B, MEYERS D, et al. LIO-SAM: Tightly-coupled lidar inertial odometry via smoothing and mapping[C]∥2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2020: 5135-5142. |
13 | STEDER B, RUHNKE M, GRZONKA S, et al. Place recognition in 3D scans using a combination of bag of words and point feature based relative pose estimation[C]∥2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2011: 1249-1255. |
14 | HIMSTEDT M, FROST J, HELLBACH S, et al. Large scale place recognition in 2D LIDAR scans using Geometrical Landmark Relations[C]∥2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2014: 5030-5035. |
15 | KIM G, KIM A. Scan context: Egocentric spatial descriptor for place recognition within 3D point cloud map[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2018: 4802-4809. |
16 | 耿丽杰, 顾健, 别晓婷, 等. 基于Scan Context与NDT-ICP相融合的果园建图方法研究[J]. 中国农机化学报, 2022, 43(7): 44-50. |
GENG L J, GU J, BIE X T, et al. Research on orchard SLAM method based on Scan Context and NDT-ICP fusion[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(7): 44-50 (in Chinese). | |
17 | 徐晓苏, 李诺, 姚逸卿. 基于快速回环检测的室外环境下激光雷达SLAM算法[J]. 中国惯性技术学报, 2022, 30(6): 716-722. |
XU X S, LI N, YAO Y Q. Lidar SLAM algorithm in outdoor environment based on fast loop detection[J]. Journal of Chinese Inertial Technology, 2022, 30(6): 716-722 (in Chinese). | |
18 | WANG Y, SUN Z Z, XU C Z, et al. LiDAR iris for loop-closure detection[C]∥2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2020: 5769-5775. |
19 | 杜秀铎, 崔丽珍, 张清宇, 等. 基于LIO-SAM框架矿山环境下的点云地图构建[J]. 内蒙古科技大学学报, 2022, 41(4): 367-371. |
DU X D, CUI L Z, ZHANG Q Y, et al. Point cloud map construction in mining environment based on LIO-SAM framework[J]. Journal of Inner Mongolia University of Science and Technology, 2022, 41(4): 367-371 (in Chinese). | |
20 | 杨书涛, 郁汉琪, 戴红卫, 等. 基于特征提取改进的LeGO-LOAM方法[J]. 南京工程学院学报(自然科学版), 2023, 21(3): 21-26. |
YANG S T, YU H Q, DAI H W, et al. Improved LeGO-LOAM method based on feature extraction[J]. Journal of Nanjing Institute of Technology (Natural Science Edition), 2023, 21(3): 21-26 (in Chinese). | |
21 | 汪湘川,张辉,陈波,等.基于扫描上下文优化的紧耦合激光SLAM方法[J/OL].控制与决策:1-9[2024-04-02]. |
WANG X C, ZHANG H, CHEN B, et al. A tightly-coupled LiDAR SLAM method based on scan context optimization[J/OL]. Control and Decision: 1-9 [2024-04-02] (in Chinese). |
/
〈 |
|
〉 |