高性能涡轮低位预旋供气系统的正向设计研究

  • 姚斡维 ,
  • 刘高文 ,
  • 陈燕 ,
  • 孔晓治 ,
  • 林阿强
展开
  • 西北工业大学

收稿日期: 2024-06-18

  修回日期: 2024-08-22

  网络出版日期: 2024-08-26

基金资助

航空发动机及燃气轮机基础科学中心项目;中国博士后科学基金资助项目

Research on Forward Design of High-Performance Turbine Low-radius Pre-swirl System

  • YAO Wo-Wei ,
  • LIU Gao-Wen ,
  • CHEN Yan ,
  • KONG Xiao-Zhi ,
  • LIN A-Qiang
Expand

Received date: 2024-06-18

  Revised date: 2024-08-22

  Online published: 2024-08-26

Supported by

Science Center for Gas Turbine Project;China Postdoctoral Science Foundation

摘要

针对仿制重构方法的逆向设计很难满足新型航空发动机预旋供气系统性能要求,本文提出基于正向设计的原创维度,从设计点参数出发,建立了预旋供气系统正向设计框架,采用叶孔式预旋喷嘴与斜接受孔,通过一维计算获得了预旋供气系统设计点沿程特征截面的气动参数、特征元件的具体几何结构参数及初步预测系统温降性能,并对一维设计结果进行三维校核。开展基于正向设计的预旋供气系统流动温降特性的性能改进评估,重点揭示接受孔入口气流攻角对系统性能的影响规律。研究表明:预旋供气系统一维设计与三维计算的流量平均偏差仅为0.8%,系统温降效率的平均偏差仅为5.12%;综合熵增、温降、功耗等系统各个性能参数,接受孔入口气流的性能平稳攻角范围为-7°~3°,由此说明基于正向设计方法对提升系统性能具有可行性。叶孔式预旋喷嘴流量系数高出孔式预旋喷嘴10.63%,高出叶片式预旋喷嘴4.58%;采用斜接受孔后,转子部分流动损失减小,区域阻力降低。正向设计得到的低位预旋供气系统的温降效率为0.66,相较于低位预旋供气系统整体水平,温降效率提升45.2%以上。

本文引用格式

姚斡维 , 刘高文 , 陈燕 , 孔晓治 , 林阿强 . 高性能涡轮低位预旋供气系统的正向设计研究[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.30832

Abstract

Aiming at the fact that it’s difficult to meet the performance requirements of the advanced aero-engine pre-swirl system by the reverse design of the imitation reconstruction method, this paper proposes to establish a framework of the pre-swirl system based on the original dimensions of the forward design from the parameters of the design point, adopting the vane shaped hole nozzle and oblique receiver hole, through one-dimensional design calculation, we can obtain the aerodynam-ic parameters along the characteristic cross-section at the design point of the pre-swirl system, the specific geometrical structural parameters of the characteristic components, and predict the system temperature drop performance preliminar-ily, in addition, calibrate the results of one-dimensional design in three-dimensional calculation. The performance im-provement evaluation of the flow and temperature drop characteristic of the pre-swirl system based on forward design is carried out, with emphasis on revealing the influence of the angle of attack of the airflow at the inlet of the receiver hole on the performance of the system. The study shows that the average deviation of the flow rate between the one-dimensional design and the three-dimensional calculation of the pre-swirl system is only 0.8%, and the average deviation of the sys-tem temperature drop efficiency is only 5.12%. Combining the entropy increase, temperature drop, power consumption, and other performance parameters of the system, the range of angle of attack at the inlet of the receiver hole when the system performance parameters are stable is -7°~3°, which indicates that it is feasible to improve the performance of the system based on the forward design method. The discharge coefficient of the vane shaped hole pre-swirl nozzle is 10.63% higher than that of the hole-type nozzle, and 4.58% higher than that of the cascade vane nozzle; the flow loss in the rotating zone is reduced by using oblique receiver holes, and the area resistance is lowered. The temperature drop efficiency of the low-radius pre-swirl system designed by the forward design method is 0.66, which is more than 45.2% higher compared to the overall level of the low-radius pre-swirl system.

参考文献

[1]林阿强, 赵义祯, 王俊凇等.燃气涡轮发动机预旋系统温降和功耗的作用机制与理论分析[J].中国电机工程学报, 2022, 42(11):4090-4102
[2]林阿强, 刘高文, 吴衡等.燃气涡轮发动机预旋系统压比和熵增的作用机制与理论分析[J].航空学报, 2022, 43(09):299-314
[3]张越, 刘高文, 李鹏飞等.内封严流对预旋系统性能影响的实验研究[J/OL].航空学报: 1-11 [2024-06-13].
[4]岳国强, 姜玉廷, 向世建等.冷气预旋诱导涡系重构气膜冷却机理研究[J].机械工程学报, 2019, 55(04):181-188
[5]徐虹艳, 张靖周, 姚玉.涡轮叶片非对称扇形气膜孔冷却特性数值研究[J].机械工程学报, 2011, 47(18):152-157
[6]黄明, 张垲垣, 李志刚等.涡轮动叶气膜冷却结构的凹槽状叶顶气热性能不确定性量化研究[J/OL]. 航空学报: 1-13[2024-06-13].
[7]杨成凤, 张靖周, 陈利强.前缘凸脊倾斜气膜冷却效果[J].机械工程学报, 2009, 45(09):312-316
[8]刘松龄, 陶智.燃气涡轮发动机的传热和空气系统[M]. 上海: 上海交通大学出版社, 2018: 727-735.
[9]李于来, 李东明, 刘宇等.船用燃气轮机预旋系统增压设计及仿真[J].热能动力工程, 2023, 38(12):149-155
[10]于洋, 牛夕莹, 米泓博等.船用燃气轮机低压盘腔系统流动特性研究[J].热能动力工程, 2023, 38(01):1-8
[11]侯伟韬, 王新军, 李炎栋.接收孔周向倾角对预旋转静盘腔流动特性的影响[J].西安交通大学学报, 2019, 53(11):27-33
[12]刘育心, 刘高文, 孔晓治等.叶型预旋喷嘴流动及温降特性实验与计算研究[J].推进技术, 2019, 40(4):815-824
[13]梁津华, 赵维维, 邹咪等.基于伴随法的预旋喷嘴优化[C]//中国科协航空发动机产学联合体. 第六届空天动力联合会议暨中国航天第三专业信息网第四十二届技术交流会暨2021航空发动机技术发展高层论坛论文集(第一册), 2022: 11.
[14]唐国庆, 薛伟鹏, 曾军等.低损失融合式预旋喷嘴设计与研究[J].推进技术, 2020, 41(09):2011-2020
[15]韦光礼, 王锁芳, 陆海等.带进气角度接受孔径向预旋流动特性数值研究[J].机械制造与自动化, 2022, 51(05):16-20
[16]龚文彬, 刘高文, 王斐等.叶型接受孔对高位预旋供气系统流动温降影响的实验研究[J].西安交通大学学报, 2021, 55(07):97-105
[17]刘育心.叶型预旋供气系统设计及其流动与温降特性研究[D]. 西安: 西北工业大学, 2019.
[18]袁烨.高位预旋系统流动温降特性计算及改进研究[D]. 西安: 西北工业大学, 2019.
[19]李金泽.高位过预旋供气系统叶型接受孔设计计算研究[D]. 西安: 西北工业大学, 2021.
[20]Scricca J.A., Moore K. D. Effects of ' Cooled' Cooling Air on Pre-swirl Nozzle Design[R]. NASA/CP-2006-214329/VOL1, 2006.
[21]郭文, 陶智, 毛军逵等.航空发动机空气系统设计[M].北京: 科学出版社, 2022: 101.
[22]刘育心.预旋喷嘴设计及其性能研究[D]. 西安: 西北工业大学, 2013.
[23]刘育心.叶型预旋喷嘴流动特性数值计算及实验研究[D]. 西安: 西北工业大学, 2015.
[24]甘国威.在多重限制条件下的低压预旋供气系统设计研究[D]. 西安: 西北工业大学, 2022.
[25]Wu C., Vaisman B., McCusker K. CFD Analyses of HPT Blade Air Delivery System with and without Impel-lers [C]. Vancouver, British Columbia, Canada: Proceed-ings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, 2011, 5: 883-892.
[26]Benim A C, D.Brillert, M. Cagan. Investigation into the computational analysis of direct-transfer pre-swirl system for gas turbine cooling[C]. Vienna, Austria: ASME Paper GT2004-54151, 2004.
[27]马佳乐, 庞亮玮, 隋宏人等.涡轮预旋供气系统跑道型接受孔对性能影响的实验评估[J].中国电机工程学报, 2023, 43(07):2761-2771
[28]Lee H, Lee J, Kim D, et al.Optimization of pre-swirl nozzle shape and radial location to increase discharge co-efficient and temperature drop[J]. Journal of Mechanical Science and Technology, 2019, 33: 4855-4866.
[29]Lee J, Lee H, Park H, et al.Design optimization of a vane type pre-swirl nozzle[J].Engineering Applications of Computational Fluid Mechanics, 2021, 15(1):164-179
[30]Jian, M, Yang, X, & Dong, W." Numerical Investigation on the Flow Characteristics in a Cover-Plate Pre-Swirl System." Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposi-tion. Volume 3A: Combustion, Fuels, and Emissions. Virtual, Online. June 7–11, 2021. V03AT04A042. ASME.
[31]Xia Z L, Wang S F, Zhang J C.A novel design of cooling air supply system with dual row pre-swirl nozzles[J].Journal of Applied Fluid Mechanics, 2020, 13(4):1299-1309
文章导航

/