流体力学与飞行力学

高性能涡轮低位预旋供气系统正向设计

  • 姚斡维 ,
  • 刘高文 ,
  • 陈燕 ,
  • 孔晓治 ,
  • 林阿强
展开
  • 1.西北工业大学 动力与能源学院,西安 710129
    2.西北工业大学 陕西省航空动力系统热科学重点实验室,西安 710072
.E-mail: linaqiang@nwpu.edu.cn

收稿日期: 2024-06-18

  修回日期: 2024-07-12

  录用日期: 2024-08-20

  网络出版日期: 2024-08-26

基金资助

国家自然科学基金(52476091);航空发动机及燃气轮机基础科学中心项目(P2022-A-II-007-001)

Forward design of high-performance turbine low-radius pre-swirl system

  • Guanwei YAO ,
  • Gaowen LIU ,
  • Yan CHEN ,
  • Xiaozhi KONG ,
  • Aqiang LIN
Expand
  • 1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710129,China
    2.Shannxi Key Laboratory of Thermal Science in Aero-engine System,Northwestern Polytechnical University,Xi’an 710072,China

Received date: 2024-06-18

  Revised date: 2024-07-12

  Accepted date: 2024-08-20

  Online published: 2024-08-26

Supported by

National Natural Science Foundation of China(52476091);Science Center for Gas Turbine Project(P2022-A-II-007-001)

摘要

针对仿制重构方法的逆向设计很难满足新型航空发动机预旋供气系统性能要求,本文提出基于正向设计的原创维度,从设计点参数出发,建立了预旋供气系统正向设计框架,采用叶孔式预旋喷嘴与斜接受孔,通过一维计算获得了预旋供气系统设计点沿程特征截面的气动参数、特征元件的具体几何结构参数及初步预测系统温降性能,并对一维设计结果进行三维校核。开展基于正向设计的预旋供气系统流动温降特性的性能改进评估,重点揭示接受孔入口气流攻角对系统性能的影响规律。研究表明:预旋供气系统一维设计与三维计算的流量平均偏差仅为0.8%,系统温降效率的平均偏差仅为5.12%;综合熵增、温降、功耗等系统各个性能参数,接受孔入口气流的性能平稳攻角范围为-7°~3°,由此说明基于正向设计方法对提升系统性能具有可行性。叶孔式预旋喷嘴流量系数高出孔式预旋喷嘴10.63%,高出叶片式预旋喷嘴4.58%;采用斜接受孔后,转子部分流动损失减小,区域阻力降低。正向设计得到的低位预旋供气系统的温降效率为66%,相较于低位预旋供气系统整体水平,温降效率提升45.2%以上。

本文引用格式

姚斡维 , 刘高文 , 陈燕 , 孔晓治 , 林阿强 . 高性能涡轮低位预旋供气系统正向设计[J]. 航空学报, 2025 , 46(7) : 130832 -130832 . DOI: 10.7527/S1000-6893.2024.30832

Abstract

Given that it is difficult for reverse design of imitation reconstruction method to meet the performance requirements of the advanced aero-engine pre-swirl system, this paper proposes an original forward design framework. Starting from design point parameters, the framework establishes a forward design process for the pre-swirl system, adopting the vane shaped hole nozzle and oblique receiver hole. Through one-dimensional design calculation, the aerodynamic parameters along the characteristic cross-section at the design point of the pre-swirl system, the specific geometrical structural parameters of the characteristic components, are obtained, along with a preliminary prediction of the system temperature drop performance. The results of one-dimensional design are then calibrated through three-dimensional calculation. The performance improvement evaluation of the flow and temperature drop characteristic of the pre-swirl system based on forward design is carried out, with emphasis on revealing the influence of the angle of attack of the airflow at the inlet of the receiver hole on the performance of the system. The study shows that the average deviation of the flow rate between the one-dimensional design and the three-dimensional calculation of the pre-swirl system is only 0.8%, and the average deviation of the system temperature drop efficiency is only 5.12%. Combining the entropy increase, temperature drop, power consumption, and other performance parameters of the system, the range of angle of attack at the inlet of the receiver hole when the system performance parameters are stable is-7° to 3°, indicating that it is feasible to improve the performance of the system based on the forward design method. The discharge coefficient of the vane shaped hole pre-swirl nozzle is 10.63% higher than that of the hole-type nozzle, and 4.58% higher than that of the cascade vane nozzle. The results also show that flow loss in the rotating zone is reduced by using oblique receiver holes, and the area resistance is lowered. The temperature drop efficiency of the low-radius pre-swirl system designed by the forward design method is 66%, which is more than 45.2% higher compared to the overall level of the low-radius pre-swirl system.

参考文献

1 林阿强, 赵义祯, 王俊凇, 等. 燃气涡轮发动机预旋系统温降和功耗的作用机制与理论分析[J]. 中国电机工程学报202242(11): 4090-4102.
  LIN A Q, ZHAO Y Z, WANG J S, et al. Mechanism and theoretical analysis of temperature drop and power consumption in a pre-swirl system of gas turbine engine[J]. Proceedings of the CSEE202242(11): 4090-4102 (in Chinese).
2 林阿强, 刘高文, 吴衡, 等. 燃气涡轮发动机预旋系统压比和熵增的作用机制与理论分析[J]. 航空学报202243(9): 291-306.
  LIN A Q, LIU G W, WU H, et al. Mechanism and theoretical analysis of pressure ratio and entropy increase in a pre-swirl system of gas turbine engine[J]. Acta Aeronautica et Astronautica Sinica202243(9): 291-306 (in Chinese).
3 张越, 刘高文, 李鹏飞, 等. 内封严流对预旋供气系统性能影响的实验研究[J]. 航空学报202445(20): 130038.
  ZHANG Y, LIU G W, LI P F, et al. Experimental study of inner seal flow effect on pre-swirl air supply system performance[J]. Acta Aeronautica et Astronautica Sinica202445(20): 130038 (in Chinese).
4 刘松龄, 陶智. 燃气涡轮发动机的传热和空气系统[M]. 上海: 上海交通大学出版社, 2018: 727-735.
  LIU S L, TAO Z. Heat transfer and secondary air system of gas turbine engine[M]. Shanghai: Shanghai Jiao Tong University Press, 2018: 727-735 (in Chinese).
5 ZHANG F, WANG X J, LI J. Numerical investigation on the flow and heat transfer characteristics in radial pre-swirl system with different fillet radius at the junction of inlet cavity and nozzle[J]. Applied Thermal Engineering2016106: 1165-1175.
6 MA J L, LIU G W, LI J Z, et al. Evaluation of low power consumption and temperature drop potential in an aero-engine pre-swirl system for turbine performance improvement[J]. Applied Energy2024359: 122601.
7 侯伟韬, 王新军, 李炎栋. 接收孔周向倾角对预旋转静盘腔流动特性的影响[J]. 西安交通大学学报201953(11): 27-33.
  HOU W T, WANG X J, LI Y D. Influence of the circumferential inclination of receiver holes on the flow characteristics of the pre-swirl rotor-stator cavity[J]. Journal of Xi’an Jiaotong University201953(11): 27-33 (in Chinese).
8 刘育心, 刘高文, 孔晓治, 等. 叶型预旋喷嘴流动及温降特性实验与计算研究[J]. 推进技术201940(4): 815-824.
  LIU Y X, LIU G W, KONG X Z, et al. Experimental testing and numerical analysis on flow characteristics and cooling performance for two vane pre-swirl nozzles[J]. Journal of Propulsion Technology201940(4): 815-824 (in Chinese).
9 梁津华, 赵维维, 邹咪, 等. 基于伴随法的预旋喷嘴优化[C]∥第六届空天动力联合会议, 2022.
  LIANG J H, ZHAO W W, ZOU M, et al. Pre-swirl nozzle optimization based on adjoint method[C]∥The 6th Joint Conference on Aerospace Power, 2022 (in Chinese).
10 唐国庆, 薛伟鹏, 曾军, 等. 低损失融合式预旋喷嘴设计与研究[J]. 推进技术202041(9): 2011-2020.
  TANG G Q, XUE W P, ZENG J, et al. Design and study of low loss integrated pre-swirl nozzle[J]. Journal of Propulsion Technology202041(9): 2011-2020 (in Chinese).
11 韦光礼, 王锁芳, 陆海, 等. 带进气角度接受孔径向预旋流动特性数值研究[J]. 机械制造与自动化202251(5): 16-20.
  WEI G L, WANG S F, LU H, et al. Numerical study on influence of receiver holes angles on flow characteristics of pre-swirl system[J]. Machine Building & Automation202251(5): 16-20 (in Chinese).
12 龚文彬, 刘高文, 王斐, 等. 叶型接受孔对高位预旋供气系统流动温降影响的实验研究[J]. 西安交通大学学报202155(7): 97-105.
  GONG W B, LIU G W, WANG F, et al. Experimental study on the influence of vane-shaped receiver holes on flow and temperature drop of a high-radius pre-swirl air supply system[J]. Journal of Xi’an Jiaotong University202155(7): 97-105 (in Chinese).
13 刘育心. 叶型预旋供气系统设计及其流动与温降特性研究[D]. 西安: 西北工业大学, 2019.
  LIU Y X. Design of blade pre-swirl gas supply system and study on its flow and temperature drop characteristics[D].Xi’an: Northwestern Polytechnical University, 2019 (in Chinese).
14 MA J L, LIU G W, YAO G W, et al. Investigations of a turbine pre-swirl system with high temperature drop efficiency through the design of a novel vane-shaped receiver hole[J]. Energy2024301: 131632.
15 郭文, 陶智, 毛军逵, 等. 航空发动机空气系统设计[M]. 北京: 科学出版社, 2022: 101.
  GUO W, TAO Z, MAO J K, et al. Design of aero-engine air system[M]. Beijing: Science Press, 2022: 101 (in Chinese).
16 刘育心. 叶型预旋喷嘴流动特性数值计算及实验研究[D]. 西安: 西北工业大学, 2015.
  LIU Y X. Numerical calculation and experimental study on flow characteristics of blade pre-swirl nozzle[D].Xi’an: Northwestern Polytechnical University, 2015 (in Chinese).
17 WU C, VAISMAN B, MCCUSKER K. CFD analyses of HPT blade air delivery system with and without impellers[C]∥ Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2011: 883-892.
18 BENIM A C, BRILLERT D, CAGAN M. Investigation into the computational analysis of direct-transfer pre-swirl systems for gas turbine cooling[C]∥ Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air. New York: ASME, 2004: 453-460.
19 马佳乐, 庞亮玮, 隋宏人, 等. 涡轮预旋供气系统跑道型接受孔对性能影响的实验评估[J]. 中国电机工程学报202343(7): 2761-2770, S24.
  MA J L, PANG L W, SUI H R, et al. Influence of the runway-shaped receiver holes on the performance experimental evaluation of the turbine pre-swirl air supply system[J]. Proceedings of the CSEE202343(7): 2761-2770, S24 (in Chinese).
20 LEE H, LEE J, KIM D, et al. Optimization of pre-swirl nozzle shape and radial location to increase discharge coefficient and temperature drop[J]. Journal of Mechanical Science and Technology201933(10): 4855-4866.
21 LEE J, LEE H, PARK H, et al. Design optimization of a vane type pre-swirl nozzle[J]. Engineering Applications of Computational Fluid Mechanics202115(1): 164-179.
22 XIA Z L, WANG S F, ZHANG J C. A novel design of cooling air supply system with dual row pre-swirl nozzles[J]. Journal of Applied Fluid Mechanics202013(4): 1299-1309.
23 JIAN M H, YANG X S, DONG W. Numerical investigation on the flow characteristics in a cover-plate pre-swirl system[C]∥ Proceedings of ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. New York: ASME, 2021.
文章导航

/