论 文

融合信息图的优化哈里斯鹰多无人机动态目标搜索

  • 柳汀 ,
  • 周国鑫 ,
  • 徐扬 ,
  • 罗德林 ,
  • 郭正玉 ,
  • 杨梦杰
展开
  • 1.吉林化工学院 航空工程学院,吉林 132022
    2.西北工业大学 民航学院,西安 710072
    3.厦门大学 航空航天学院,厦门 361102
    4.空基信息感知与融合全国重点实验室,洛阳 471000
    5.中国空空导弹研究院,洛阳 471000
    6.盛云科技有限公司,昆明 650000
.E-mail: liuting@jlict.edu.cn

收稿日期: 2024-06-03

  修回日期: 2024-08-02

  录用日期: 2024-08-19

  网络出版日期: 2024-08-26

基金资助

空基信息感知与融合全国重点实验室与航空科学基金联合资助项目(20220001068001);陕西省自然科学基础研究计划(2023-JC-QN-0733);云南省科技人才与平台计划(院士专家工作站)(202305AF150152)

Optimised Harris hawks multi-UAV dynamic target search with fused infographics

  • Ting LIU ,
  • Guoxin ZHOU ,
  • Yang XU ,
  • Delin LUO ,
  • Zhengyu GUO ,
  • Mengjie YANG
Expand
  • 1.College of Aeronautical Engineering,Jilin Institute of Chemical Technology,Jilin 132022,China
    2.School of Civil Aviation,Northwestern Polytechnical University,Xi’an 710072,China
    3.School of Aerospace Engineering,Xiamen University,Xiamen 361102,China
    4.National Key Laboratory of Air-based Information Perception and Fusion,Luoyang 471000,China
    5.China Airborne Missile Academy,Luoyang 471000,China
    6.Sheng Yun Technology Co. Ltd. ,Kunming 650000,China

Received date: 2024-06-03

  Revised date: 2024-08-02

  Accepted date: 2024-08-19

  Online published: 2024-08-26

Supported by

National Key Laboratory of Air-based Information Perception and Fusion and the Aeronautic Science Foundation of China(20220001068001);Natural Science Basic Research Plan in Shanxi Province of China(2023-JC-QN-0733);Yunnan Province Science Technology Talent and Platform Plan (Academician Expert Workstation)(202305AF150152)

摘要

在针对多无人机(multi-UAV)协同运动目标搜索问题的研究中,提出了一种融入信息图模型的优化哈里斯鹰优化算法的协同搜索决策方法。构建了基于高斯分布的目标概率信息图模型;通过建立确定度信息图模型,提升了环境中目标存在概率的确定性;引入吸引与排斥机制的数字信息素图,指导无人机向尚未探索区域移动,有效降低重复搜寻行为,提升协同搜索的效率。针对哈里斯鹰优化算法易陷入局部最优的问题,提出一种非线性能量因子更新策略,整合最优个体位置,提出新的位置更新公式。最后,针对轨迹随机变化的动态目标,设计了可回访数字信息图及自适应目标搜索增益函数,增强无人机针对动态目标的捕获能力。仿真结果验证了改进哈里斯鹰优化算法在多无人机协同搜索动态目标问题上的有效性。

本文引用格式

柳汀 , 周国鑫 , 徐扬 , 罗德林 , 郭正玉 , 杨梦杰 . 融合信息图的优化哈里斯鹰多无人机动态目标搜索[J]. 航空学报, 2024 , 45(S1) : 730773 -730773 . DOI: 10.7527/S1000-6893.2024.30773

Abstract

In the study of cooperative search for moving targets by multi-Unmanned Aerial Vehicle (multi-UAV), this paper proposes a cooperative search decision-making method that integrates an information graph model with the optimized Harris hawk optimization algorithm. A target probability information graph model based on Gaussian distribution is constructed, which enhances the certainty of target existence probability in the environment through the establishment of a certainty information graph model. Furthermore, a digital information pheromone graph with attraction and repulsion mechanisms is used to guide UAVs to move towards unexplored areas, effectively reducing repetitive search behaviors and enhancing the efficiency of cooperative search. To address the issue of Harris hawk optimization algorithm being prone to local optima, a non-linear energy factor updating strategy is proposed, integrating the optimal individual positions and presenting a new position update formula. Finally, to search for the targets with randomly changing trajectories, a revisitable digital information graph and an adaptive target search gain function are designed to enhance the capability of UAVs to capture moving targets. Simulation results verify the effectiveness of the improved Harris hawk optimization algorithm in cooperative search for moving targets by multiple UAVs.

参考文献

1 段海滨, 梅宇, 赵彦杰, 等. 2023年无人机热点回眸[J]. 科技导报202442(1): 217-231.
  DUAN H B, MEI Y, ZHAO Y J, et al. Review of technological hotspots of unmanned aerial vehicle in 2023[J]. Science & Technology Review202442(1): 217-231 (in Chinese).
2 LUO D L, SHAO J, XU Y, et al. Coevolution pigeon-inspired optimization with cooperation-competition mechanism for multi-UAV cooperative region search[J]. Applied Sciences20199(5): 827.
3 周贞文, 邵将, 徐扬, 等. 针对逃逸目标的多机协同围捕策略研究[J]. 空军工程大学学报(自然科学版)202122(03): 2-8.
  ZHOU Z W, SHAO J, XU Y, et al. Research on multi UAV cooperative round up strategy for escape targets[J]. Journal Of Air Force Engineering University (National Science Edition) 202122(03): 2-8 (in Chinese).
4 赵明, 苏小红, 马培军, 等. 复杂多约束UAVs协同目标分配的一种统一建模方法[J]. 自动化学报201238(12): 2038-2048.
  ZHAO M, SU X H, MA P J, et al. A unified modeling method of UAVs cooperative target assignment by complex multi-constraint conditions[J]. Acta Automatica Sinica201238(12): 2038-2048 (in Chinese).
5 邓可, 连振江, 周德云, 等. 基于改进量子粒子群算法的多无人机任务分配[J]. 指挥控制与仿真201840(5): 32-36.
  DENG K, LIAN Z J, ZHOU D Y, et al. Task allocation of multi-unmanned aerial vehicle based on improved quantum particle swarm optimization[J]. Command Control & Simulation201840(5): 32-36 (in Chinese).
6 张方方, 陈波, 班旋旋, 等. 基于生物启发神经网络和DMPC的多机器人协同搜索算法[J]. 控制与决策202136(11): 2699-2706.
  ZHANG F F, CHEN B, BAN X X, et al. Multi-robot cooperative search algorithm based on bio-inspired neural network and DMPC[J]. Control and Decision202136(11): 2699-2706 (in Chinese).
7 ZHU K, HAN B, ZHANG T. Multi-UAV distributed collaborative coverage for target search using heuristic strategy[J]. Guidance, Navigation and Control20211(1): 2150002.
8 AIELLO G, VALAVANIS K P, RIZZO A. Fixed-wing UAV energy efficient 3D path planning in cluttered environments[J]. Journal of Intelligent & Robotic Systems2022105(3): 60.
9 BAUSO D, GIARRE L, PESENTI R. Multiple UAV cooperative path planning via neuro-dynamic programming[C]∥ 2004 43rd IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2004: 1087-1092.
10 PEHLIVANOGLU Y V, PEHLIVANOGLU P. An enhanced genetic algorithm for path planning of autonomous UAV in target coverage problems[J]. Applied Soft Computing2021112: 107796.
11 DUAN H B, ZHAO J X, DENG Y M, et al. Dynamic discrete pigeon-inspired optimization for multi-UAV cooperative search-attack mission planning[J]. IEEE Transactions on Aerospace and Electronic Systems202157(1): 706-720.
12 MOON S, OH E, SHIM D H. An integral framework of task assignment and path planning for multiple unmanned aerial vehicles in dynamic environments[J]. Journal of Intelligent & Robotic Systems201370(1): 303-313.
13 WANG P Y, LIU Y L, YAO W M, et al. Improved A-star algorithm based on multivariate fusion heuristic function for autonomous driving path planning[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering2023237(7): 1527-1542.
14 ZHANG Z, JIANG J, WU J, et al. Efficient and optimal penetration path planning for stealth unmanned aerial vehicle using minimal radar cross-section tactics and modified A-Star algorithm[J]. ISA Transactions2023134: 42-57.
15 XU L, CAO X B, DU W B, et al. Cooperative path planning optimization for multiple UAVs with communication constraints[J]. Knowledge-Based Systems2023260: 110164.
16 郑伟铭, 周贞文, 徐扬, 等. 针对运动目标的多无人机协同鸽群优化搜索方法[J]. 控制理论与应用202340(4): 624-632.
  ZHENG W M, ZHOU Z W, XU Y, et al. Multi-UAV cooperative pigeon-inspired optimization search method for moving targets[J]. Control Theory & Applications202340(4): 624-632 (in Chinese).
17 周鹤翔, 徐扬, 罗德林. 针对动态目标的多无人机协同组合差分进化搜索方法[J]. 控制与决策202338(11): 3128-3136.
  ZHOU H X, XU Y, LUO D L. A composite differential evolution algorithm for multi-UAV cooperative dynamic target search[J]. Control and Decision202338(11): 3128-3136 (in Chinese).
18 LIU H, LIN M, DENG L Y. UAV route planning for aerial photography under interval uncertainties[J]. Optik2016127(20): 9695-9700.
19 YU Y, LEE S. Efficient multi-UAV path planning for collaborative area search operations[J]. Applied Sciences202313(15): 8728.
20 戴健, 许菲, 陈琪锋. 多无人机协同搜索区域划分与路径规划[J]. 航空学报202041(S1): 723770.
  DAI J, XU F, CHEN Q F. Multi-UAV cooperative search on region division and path planning[J]. Acta Aeronautica et Astronautica Sinica202041(S1): 723770 (in Chinese).
21 符小卫, 王辉, 徐哲. 基于DE-MADDPG的多无人机协同追捕策略[J]. 航空学报202243(05): 325311.
  FU X W, WANG H, XU Z. Cooperative pursuit strategy for multi-UAVs based on DE-MADDPG algorithm[J]. Acta Aeronautica et Astronautica Sinica202243(5): 325311 (in Chinese).
22 YAN F, CHU J, HU J W, et al. Cooperative task allocation with simultaneous arrival and resource constraint for multi-UAV using a genetic algorithm[J]. Expert Systems with Applications2024245: 123023.
23 LI J, XIONG Y H, SHE J H. UAV path planning for target coverage task in dynamic environment[J]. IEEE Internet of Things Journal202310(20): 17734-17745.
24 ZHANG W, ZHANG S, WU F Y, et al. Path planning of UAV based on improved adaptive grey wolf optimization algorithm[J]. IEEE Access20219: 89400-89411.
25 徐博, 张大龙. 基于量子行为鸽群优化的无人机紧密编队控制[J]. 航空学报202041(8): 323722.
  XU B, ZHANG D L. Tight formation flight control of UAVs based on pigeon inspired algorithm optimization by quantum behavior[J]. Acta Aeronautica et Astronautica Sinica202041(8): 323722 (in Chinese).
26 张新昱, 谢思宇, 陶洋, 等. 面向无人机空中加油紧密编队的鲁棒控制方法[J]. 航空学报202344(20): 628425.
  ZHANG X Y, XIE S Y, TAO Y, et al. A robust control method for close formation of aerial-refueling UAVs[J]. Acta Aeronautica et Astronautica Sinica202344(20): 628425 (in Chinese).
文章导航

/