防热结构梯度特性对飞行器气动热载调控的耦合模拟与实验验证
收稿日期: 2024-07-01
修回日期: 2024-07-25
录用日期: 2024-08-19
网络出版日期: 2024-08-21
基金资助
国家重点研发计划(2019YFA0405202);国家自然科学基金(12072361)
Coupling simulation of aircraft aerothermodynamics regulated by gradient characteristics of thermal protection structure and its experimental verification
Received date: 2024-07-01
Revised date: 2024-07-25
Accepted date: 2024-08-19
Online published: 2024-08-21
Supported by
National Key Research and Development Plan(2019YFA0405202);National Natural Science Foundation of China(12072361)
先进的热防护系统是高速飞行器实现安全飞行的重要系统。随着热防护用复合材料体系的发展,防隔热一体化的功能梯度型复合材料逐步得到应用,实现防热、隔热性能的按需定制与协同设计。针对防隔热一体化复合材料结构件,发展了高马赫数气动热环境/功能梯度结构热响应紧耦合计算方法,开展了典型状态下内嵌功能梯度材料的复合防热结构的高速可压缩流动/传热耦合模拟,并对内嵌分层温度传感器的功能梯度材料试件进行了石英灯红外加热实验,获得了复合防热结构耦合传热特性的影响规律,分析了结构梯度特性对飞行器气动热载的调控机制。研究发现,在高马赫气流条件下,防隔热梯度材料能够较好地调控热量在防热结构内部的输运过程,既可以防止表面瞬时超耐温极限而导致热损伤,又可实现结构内部温度均匀变化从而避免热失配,达到防隔一体、内外兼顾的综合效果。
杨肖峰 , 蔡兴考 , 刘磊 , 魏东 , 肖光明 , 杜雁霞 , 桂业伟 . 防热结构梯度特性对飞行器气动热载调控的耦合模拟与实验验证[J]. 航空学报, 2025 , 46(9) : 130888 -130888 . DOI: 10.7527/S1000-6893.2024.30888
Advanced thermal protection system is an important part for safe flight of high-speed aircraft. With the development of composite material system for thermal protection, functional gradient composite materials with integrated thermal protection/insulation have been gradually applied to realize on-demand customization and collaborative design of thermal protection and thermal insulation properties. A tight coupling computation method for high Mach number aerothermal environment and thermal response of functionally gradient structure was developed for integrated thermal insulation composite structures. High-speed compressible flow/heat transfer coupling simulation of composite thermal structures with functionally gradient materials embedded was carried out under typical conditions. The infrared heating experiment of quartz lamp was carried out by testing functional gradient material with embedded layered temperature sensors. The influence of coupled heat transfer characteristics of composite thermal structures was obtained. The regulation mechanism of structural gradient characteristics on aerodynamic thermal load of aircraft was analyzed. It was found that under the condition of high Mach number air flow, the thermal insulation gradient material can better regulate the heat transport process inside the thermal insulation structure, which can not only prevent the instantaneous surface from exceeding the temperature limit to cause thermal damage, but also achieve uniform changes in the internal temperature of the structure to avoid thermal mismatch.
1 | PETERS A B, ZHANG D J, CHEN S, et al. Materials design for hypersonics?[J]. Nature Communications, 2024, 15(1): 3328. |
2 | 黄红岩, 苏力军, 雷朝帅, 等. 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020, 41(12): 023716. |
HUANG H Y, SU L J, LEI C S, et al. Reusable thermal protective materials: Application and research progress[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 023716 (in Chinese). | |
3 | GLASS D E. Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and hot structures for hypersonic vehicles?[C]?∥15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
4 | 杨强, 解维华, 彭祖军, 等. 热防护设计分析技术发展中的新概念与新趋势[J]. 航空学报, 2015, 36(9): 2981-2991. |
YANG Q, XIE W H, PENG Z J, et al. New concepts and trends in development of thermal protection design and analysis technology?[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 2981-2991 (in Chinese). | |
5 | TENNEY D R, LISAGOR W B, DIXON S C. Materials and structures for hypersonic vehicles[J]. Journal of Aircraft, 1989, 26(11): 953-970. |
6 | BIRMAN V, BYRD L W. Modeling and analysis of functionally graded materials and structures[J]. Applied Mechanics Reviews, 2007, 60(5): 195-216. |
7 | BURLAYENKO V N, ALTENBACH H, SADOWSKI T, et al. Modelling functionally graded materials in heat transfer and thermal stress analysis by means of graded finite elements?[J]. Applied Mathematical Modelling, 2017, 45: 422-438. |
8 | LI Y, FENG Z Y, HAO L, et al. A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties[J]. Advanced Materials Technologies, 2020, 5(6): 1900981. |
9 | STEWART D, LEISER D. Lightweight TUFROC TPS for hypersonic vehicles?[C]?∥14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006. |
10 | FELDMAN J, STEWART D, LEISER D, et al. TUFROC thermal protection system?[C]?∥2019 Hypersonic Technology & Systems Conference (HTSC). Washington, D. C.: NASA, 2019. |
11 | GRANTZ A. X-37B orbital test vehicle and derivatives[C]?∥AIAA SPACE 2011 Conference & Exposition. Reston: AIAA, 2011. |
12 | BALARAMAN P, RAJ V S J, SREEHARI V M. Static and dynamic analysis of re-entry vehicle nose structures made of different functionally graded materials?[J]. Aerospace, 2022, 9(12): 81. |
13 | WANG Y W, REN H Y, FU T R, et al. Hygrothermal mechanical behaviors of axially functionally graded microbeams using a refined first order shear deformation theory[J]. Acta Astronautica, 2020, 166: 306-316. |
14 | 王保林, 韩杰才, 杜善义. 基底/功能梯度涂层结构的动态热应力分析及结构优化[J]. 航空学报, 2000, 21(3): 286-288. |
WANG B L, HAN J C, DU S Y. Thermal stresses analysis and optimization of substrate/functional graded coating structure?[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(3): 286-288 (in Chinese). | |
15 | LIU Q, MING P J. A high-order control volume finite element method for 3-D transient heat conduction analysis of multilayer functionally graded materials?[J]. Numerical Heat Transfer, Part B: Fundamentals, 2018, 73(6): 363-385. |
16 | LIU Q, MING P J, ZHAO H Y, et al. A high order control volume finite element method for transient heat conduction analysis of multilayer functionally graded materials with mixed grids?[J]. Journal of Thermal Science, 2020, 29(1): 144-158. |
17 | SHENAS A G, MALEKZADEH P, ZIAEE S. Thermoelastic buckling analysis of pre-twisted functionally graded beams with temperature-dependent material properties[J]. Acta Astronautica, 2017, 133: 1-13. |
18 | LIU Q, YU Y, MING P J. A high-order control volume finite element method for thermoelastic analysis of functionally graded solids with mixed grids?[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(11): 3994-4013. |
19 | ZHANG S T, CHEN F, LIU H. Time-adaptive, loosely coupled strategy for conjugate heat transfer problems in hypersonic flows?[J]. Journal of Thermophysics and Heat Transfer, 2014, 28(4): 635-646. |
20 | JOHN B, KUSUMA CHANDRASHEKHARA S, PANNEERSELVAM V. Conjugate heat transfer study of hypersonic flow past a cylindrical leading edge composed of functionally graded materials[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(8): 4394-4411. |
21 | 杨肖峰, 唐伟, 桂业伟, 等. 探路者号火星探测器气动热和传热耦合分析?[J]. 工程热物理学报, 2014, 35(12): 2461-2465. |
YANG X F, TANG W, GUI Y W, et al. Coupled computation of aeroheating and heat transfer for Mars pathfinder entry vehicle?[J]. Journal of Engineering Thermophysics, 2014, 35(12): 2461-2465 (in Chinese). | |
22 | 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7): 020844. |
GUI Y W, LIU L, DAI G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development?[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 020844 (in Chinese). | |
23 | 杨肖峰, 桂业伟, 刘磊, 等. 表面催化特性对火星进入气固耦合热效应的影响研究[J]. 中国科学: 技术科学, 2018, 48(9): 939-949. |
YANG X F, GUI Y W, LIU L, et al. Influence of surface catalysis on coupled aerodynamic heating for Mars entries?[J]. Scientia Sinica (Technologica), 2018, 48(9): 939-949 (in Chinese). | |
24 | YANG X F, GUI Y W, TANG W, et al. Surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow[J]. Acta Astronautica, 2018, 147: 445-453. |
25 | YANG X F, DU Y X, LIU S S, et al. Coupled heat transfer characteristics on gas-solid reacting interface in carbon-oxygen dissociating environment for spacecraft entry flow?[J]. Journal of Thermal Science and Technology, 2020, 15(2): JTST0020. |
26 | LU G Y, WONG D W. An adaptive inverse-distance weighting spatial interpolation technique?[J]. Computers & Geosciences, 2008, 34(9): 1044-1055. |
27 | 杨肖峰. 火星进入器高超声速气动加热与耦合热效应研究[D]. 绵阳: 中国空气动力研究与发展中心, 2017. |
YANG X F. Hypersonic aerodynamic heating characteristics and coupling thermal effects for Mars entry vehicles [D]. Mianyang: China Aerodynamics Research and Development Center, 2017 (in Chinese). | |
28 | 桂业伟, 唐伟, 杜雁霞, 等. 临近空间高超声速飞行器热安全[M]. 北京: 国防工业出版社, 2019. |
GUI Y W, TANG W, DU Y X. Thermal safety issues of near-space hypersonic vehicles[M]. Beijing: National Defense Industry Press, 2019 (in Chinese). |
/
〈 |
|
〉 |