网络攻击下导弹自适应事件触发制导律
收稿日期: 2024-07-02
修回日期: 2024-08-01
录用日期: 2024-08-06
网络出版日期: 2024-08-20
基金资助
国家自然科学基金(61473147)
Adaptive event-triggered guidance law of missile under cyber attacks
Received date: 2024-07-02
Revised date: 2024-08-01
Accepted date: 2024-08-06
Online published: 2024-08-20
Supported by
National Natural Science Foundation of China(61473147)
针对导弹拦截机动目标过程中遭受网络攻击问题,研究了一类自适应事件触发制导方法。首先,为了解决恶意网络攻击导致系统状态无法准确测量的问题,基于backstepping技术分别针对原系统真实状态和受到攻击后的虚假状态建立相应的误差动态面;其次,引入多Nussbaum函数克服信息遭受攻击造成的控制方向未知问题;然后,由于传统时间触发机制会造成计算资源浪费等问题,引入事件触发机制缓解计算负但;接着,给出触发条件进而提出了一类自适应事件触发控制策略,并根据Lyapunov定理证明了闭环系统的有界性;最后,仿真结果表明所提算法能够应对网络攻击问题,并成功拦截不同机动方式下的目标。
高煜欣 , 张绍杰 , 刘春生 . 网络攻击下导弹自适应事件触发制导律[J]. 航空学报, 2024 , 45(S1) : 730892 -730892 . DOI: 10.7527/S1000-6893.2024.30892
To address the problem of cyber-attacks in the process of intercepting maneuvering targets by missiles, a class of adaptive event-triggered guidance method is studied. Firstly, as the system suffering from malicious cyber attacks, the system states cannot be accurately measured. Based on the backstepping technology, the corresponding error dynamic surfaces are established for the real state of the original system and the false state after the attack, respectively. Secondly, the multiple Nussbaum functions are employed to overcome the unknown control direction caused by cyber attacks. Then, since the traditional time-triggering mechanism will cause the waste of computing resources, the event-triggering mechanism is introduced to alleviate the computational burden. Further, the triggering condition is given, and a class of adaptive event-triggered control strategy is proposed. The stability of the closed-loop system is proved to be bounded according to the Lyapunov theory. Finally, the simulation results verify the proposed method can handle cyber attacks and intercept successfully the target with different maneuvering modes.
1 | 赵恩娇,孙明玮. 多飞行器协同作战关键技术研究综述[J]. 战术导弹技术, 2020, 4: 175-182. |
ZHAO E J, SUN M W. Review on the key technology of cooperative engagement for multiple flight vehicles[J]. Tactical Missile Technology, 2020, 4: 175-182 (in Chinese). | |
2 | WANG C H, CHEN C Y, HUNG K N. Toward a new task assignment and path evolution (TAPE) for missile defense system (MDS) using intelligent adaptive SOM with recurrent neural networks (RNNs)[J]. IEEE Transactions on Cybernetics, 2015, 45(6): 1134-1145. |
3 | 高煜欣, 刘春生. 基于微分对策的非仿射导弹学习滑模制导[J]. 系统工程与电子技术, 2023, 45(11): 3616-3623. |
GAO Y X, LIU C S. Differential game-based learning sliding mode guidance for non-affine missile system[J]. Systems Engineering and Electronics, 2023, 45(11): 3616-3623 (in Chinese). | |
4 | 李昊键, 刘远贺, 梁彦刚, 等. 考虑视场角约束的碰撞角控制预设性能制导律[J]. 航空学报, 2023,44(15): 528764. |
LI H J, LIU Y H, LIANG Y G. Prescribed performance guidance law with field-of-view and impact angle constraints [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528764. (in Chinese). | |
5 | YANG Y, HUANG J S, SU X J, et al. Adaptive control of second-order nonlinear systems with injection and deception attacks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(1): 574-581. |
6 | ZHAO J P, YANG G H. Fuzzy adaptive finite-time resilient control against unknown false data injection attacks for MIMO nonlinear switched systems with unknown dead zone[J]. IEEE Transactions on Cybernetics, 2024, 54(1): 586-598. |
7 | HUA C C, NING P J, LI K, et al. Fixed-time prescribed tracking control for stochastic nonlinear systems with unknown measurement sensitivity[J]. IEEE Transactions on Cybernetics, 2022, 52(5): 3722-3732. |
8 | ZHANG Q, HE D K. Adaptive neural control of nonlinear cyber–physical systems against randomly occurring false data injection attacks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(4): 2444-2455. |
9 | WANG T D, WANG H Q, XU N, et al. Sliding-mode surface-based decentralized event-triggered control of partially unknown interconnected nonlinear systems via reinforcement learning[J]. Information Sciences, 2023, 641: 119070. |
10 | LIU S L, NIU B, ZONG G D, et al. Adaptive neural dynamic-memory event-triggered control of high-order random nonlinear systems with deferred output constraints[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21(3): 2779-2791. |
11 | 张豪, 王鹏, 汤国建,等. 高超声速变外形飞行器事件触发有限时间控制[J]. 航空学报, 2023,44(15): 528494. |
ZHANG H, WANG P, TANG G J. Event-triggered fast finite time control for hypersonic morphing vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2023,44(15): 528494 (in Chinese). | |
12 | 何智川,王江,范世鹏,等. 事件触发机制下具有视场约束的三维协同制导[J].航空学报, 2024,45(03): 328687. |
HE Z C, WANG J, FAN S P. Three-dimensional cooperative guidance with field-of-view constraints based on event-triggered mechanism [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(03): 328687 (in Chinese). | |
13 | XING L T, WEN C Y, LIU Z T, et al. Event-triggered adaptive control for a class of uncertain nonlinear systems[J]. IEEE Transactions on Automatic Control, 2017, 62(4): 2071-2076. |
14 | SHEN Y H, CHEN M, ZHENG Z X, et al. Event-triggered-backstepping-based parallel approaching guidance method for maneuvering target interception[J]. Guidance, Navigation and Control, 2022, 2(1): 1-10. |
15 | DUAN D D, LIU C S. Event-based optimal guidance laws design for missile-target interception systems using fuzzy dynamic programming approach[J]. ISA Transactions, 2022, 128(Pt B): 243-255. |
16 | GAO Y X, LIU C S, DUAN D D, et al. Distributed optimal event-triggered cooperative control for nonlinear multi-missile guidance systems with partially unknown dynamics[J]. International Journal of Robust and Nonlinear Control, 2022, 32(15): 8369-8396. |
17 | LI B M, XIA J W, ZHANG H S, et al. Event-triggered adaptive fuzzy tracking control for nonlinear systems[J]. International Journal of Fuzzy Systems, 2020, 22(5): 1389-1399. |
18 | SUN J L, LIU C S. Adaptive dynamic surface-based differential games for a class of pure-feedback nonlinear systems with output constraints[J]. International Journal of Control, 2020, 93(6): 1291-1302. |
19 | SUN J L, LIU C S. Backstepping-based adaptive dynamic programming for missile-target guidance systems with state and input constraints[J]. Journal of the Franklin Institute, 2018, 355(17): 8412-8440. |
20 | BARDHAN R, GHOSE D. Nonlinear differential games-based impact-angle-constrained guidance law[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(3): 384-402. |
/
〈 |
|
〉 |