融合先验信息的民航发动机自适应气路故障诊断方法
收稿日期: 2024-06-26
修回日期: 2024-07-15
录用日期: 2024-08-05
网络出版日期: 2024-08-20
基金资助
国家自然科学基金(U2133202);中国民航大学中央高校基本科研项目(3122022046)
Adaptive gas path fault diagnosis method of civil aviation engine fusing prior information
Received date: 2024-06-26
Revised date: 2024-07-15
Accepted date: 2024-08-05
Online published: 2024-08-20
Supported by
National Natural Science Foundation of China(U2133202);Civil Aviation University of China Central University Basic Research Project(3122022046)
针对民用航空发动机传感器数量不足、难以实现有效故障诊断的问题,提出了融合先验信息的自适应气路分析模型(AGPAM-PI),提升了发动机故障诊断的准确性与效率。AGPAM-PI结合发动机指印图的先验信息和非线性气路故障诊断方法,首先通过指印图对故障信息进行有效补充,对故障因子求解范围约束限定,然后再利用非线性气路分析模型进行故障诊断。以一台在实际运营过程中发生故障的CFM56-7B发动机数据进行验证,结果表明模型对该发动机的故障进行了准确的定位并通过发动机故障诊断规则分析了发动机故障模式,证明了模型的有效性。相比传统的气路故障诊断方法,先验故障信息的引入增强了单元体故障的识别能力,提高了诊断精度。
郭庆 , 刘晓阳 , 樊俊峰 , 付宇 , 左洪福 . 融合先验信息的民航发动机自适应气路故障诊断方法[J]. 航空学报, 2025 , 46(4) : 230871 -230871 . DOI: 10.7527/S1000-6893.2024.30871
To address the problem of difficulty in effective fault diagnosis for civil aviation engines due to insufficient numbers of sensors, an Adaptive Gas Path Analysis Model incorporated with Prior Information (AGPAM-PI) is proposed to enhance the accuracy and efficiency of engine fault diagnosis. The AGPAM-PI combines the prior information of the engine fingerprint and the nonlinear gas path fault diagnosis method. The fault information is firstly supplemented through the fingerprint diagram, the solution range of fault factors is constrained, and then the nonlinear gas path analysis model is used for fault diagnosis. The model is validated using the data from a CFM56-7B engine that experienced a fault during actual operation. The results show that the model accurately locates the fault of the engine and analyzes the engine fault mode through engine fault diagnosis rules, which proves the validity of the model. Compared with traditional gas path fault diagnosis methods, the introduction of prior fault information improves the ability to distinguish unit faults and enhances diagnostic accuracy.
1 | IATA. Airline maintenance cost executive commtary: FY2022[R]. Montreal: International Air Transport Association, 2024. |
2 | 黄金泉, 王启航, 鲁峰. 航空发动机气路故障诊断研究现状与展望[J]. 南京航空航天大学学报, 2020, 52(4): 507-522. |
HUANG J Q, WANG Q H, LU F. Research status and prospect of gas path fault diagnosis for aeroengine[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(4): 507-522 (in Chinese). | |
3 | URBAN L A. Gas turbine engine parameter interrelationships[M]. Windsor Locks: Hamilton Standard Division of United Aircraft Corporation, 1969: 4-5. |
4 | DANIEL K. A non-linear weighted least squares gas turbine diagnostic approach and multi-fuel performance simulation[D]. Cranfield: Cranfield University, 2011: 1-2. |
5 | SIMON D, SIMON D L. Aircraft turbofan engine health estimation using constrained Kalman filtering[J]. Journal of Engineering for Gas Turbines and Power, 2005, 127(2): 323-328. |
6 | FU X Y, LUO H, ZHONG S S, et al. Aircraft engine fault detection based on grouped convolutional denoising autoencoders[J]. Chinese Journal of Aeronautics, 2019, 32(2): 296-307. |
7 | 李业波, 李秋红, 黄向华, 等, 航空发动机气路部件故障融合诊断方法研究 [J]. 航空学报, 2014, 35(6): 1612-1622. |
LI Y B, LI Q H, HUANG X H, et al. Research on gas fault fusion diagnosis of aero-engine component[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6): 1612-1622 (in Chinese). | |
8 | 鲁峰, 黄金泉, 仇小杰, 等. 基于信息熵融合提取特征的发动机气路分析[J]. 仪器仪表学报, 2012, 33(1): 13-19. |
LU F, HUANG J Q, QIU X J, et al. Feature extraction based on information entropy fusion for turbo-shaft engine gas-path analysis[J]. Chinese Journal of Scientific Instrument, 2012, 33(1): 13-19 (in Chinese). | |
9 | 林京, 张博瑶, 张大义, 等. 航空燃气涡轮发动机故障诊断研究现状与展望[J]. 航空学报, 2022, 43(8): 626565. |
LIN J, ZHANG B Y, ZHANG D Y, et al. Research status and prospect of fault diagnosis for gas turbine aeroengine[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 626565 (in Chinese). | |
10 | 陈大光. 燃气涡轮发动机的状态监控与故障诊断[J]. 航空学报, 1989,10(6): 225-236. |
CHEN D G. Gas turbine engine condition monitoring and fault diagnostics[J]. Acta Aeronautica et AstronauticaSinica,1989, 10(6): 225-236 (in Chinese). | |
11 | 陈大光, 韩凤学, 唐耿林. 多状态气路分析法诊断发动机故障的分析[J]. 航空动力学报, 1994(4): 12-15. |
CHEN D G, HAN F X, TANG G L. Analysis of multistate gas path analytical method in fault diagnosis for aeroengine[J]. Journal of Aerospace Power, 1994,9(4): 12-15 (in Chinese). | |
12 | 朱之丽, 孟凡涛. 模型辨识法诊断发动机故障的分析[J]. 北京航空航天大学学报, 2003, 29(5): 398-401. |
ZHU Z L, MENG F T. Aircraft engine fault diagnosis research using model identification based method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(5): 398-401 (in Chinese). | |
13 | 范作民, 孙春林, 林兆福. 发动机故障诊断的主因子模型[J]. 航空学报, 1993, 14(12): 588-595. |
FAN Z M, SUN CL, LIN Z F. Primary factor model for jet engine fault diagnosis[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(12): 588-595 (in Chinese). | |
14 | ARETAKIS N, MATHIOUDAKIS K, STAMATIS A. Nonlinear engine component fault diagnosis from a limited number of measurements using a combinatorial approach[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125(3): 642-650. |
15 | KAMBOUKOS P, MATHIOUDAKIS K. Multipoint non-linear method for enhanced component and sensor malfunction diagnosis[C]?∥Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. New York:ASME, 2008: 619-627. |
16 | GULATI A, ZEDDA M, SINGH R. Gas turbine engine and sensor multiple operating point analysis using optimization techniques[C]∥36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2000. |
17 | BORGUET S, DEWALLEF P, LE’ONARD O. A way to deal with model-plant mismatch for a reliable diagnosis in transient operation[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(3): 031601. |
18 | 顾嘉辉, 黄金泉, 鲁峰. 航空发动机健康估计的神经网络修正卡尔曼滤波算法[J]. 推进技术, 2018, 39(11): 2564-2570. |
GU J H, HUANG J Q, LU F. Neural network corrected Kalman filter algorithm for aero-engine health parameters estimation[J]. Journal of Propulsion Technology, 2018, 39(11): 2564-2570 (in Chinese). | |
19 | 范作明, 孙春林, 白杰. 航空发动机故障诊断导论[M]. 北京: 科学出版社, 2004: 17-18. |
FAN Z M, SUN C L, BAI J. Introduction to aero-engine fault diagnosis[M]. Beijing: Science Press, 2004: 17-18 (in Chinese). | |
20 | 蒋伟. 基于指印图与气路参数偏差值的航空发动机气路性能评估[D]. 哈尔滨: 哈尔滨工业大学, 2022: 9-10. |
JIANG W. Performance evaluation of aero-engine gas path based on fingerprint and gas path parameter deviation value[D]. Harbin: Harbin Institute of Technology, 2022: 9-10 (in Chinese). | |
21 | KURZKE J. How to create a performance model of a gas turbine from a limited amount of information[C]?∥Proceedings of ASME Turbo Expo 2005: Power for Land, Sea, and Air. New York: ASME, 2008: 145-153. |
22 | KURZKE J, HALLIWELL I. Component performance[M]?∥Propulsion and Power. Cham: Springer International Publishing, 2018: 439-575. |
23 | GIR?O B P. Development of a prediction model for the CFM56-7B engine[D]. Coventry: The University of Beiralnterior, 2023: 28. |
24 | 王冉. 基于QAR的航空发动机性能发展预测研究[D]. 天津: 中国民航大学, 2020: 19-20. |
WANG R. Research on aero-engine performance development prediction based on QAR[D]. Tianjin: Civil Aviation University of China, 2020: 19-20 (in Chinese). | |
25 | 黄晓光. 基于热力参数的燃气轮机故障诊断[D]. 上海: 上海交通大学, 2000: 25-27. |
HUANG X G. Fault diagnosis of gas turbine based on thermal parameters [D]. Shanghai: Shanghai Jiao Tong University, 2000: 25-27 (in Chinese). | |
26 | 林海. SPEY三轴燃气轮机设计工况各种故障性能的模型[D]. 上海: 上海交通大学, 2008: 33-37. |
Lin H. Model of various fault performance of SPEY three-axis gas turbine under design conditions[D]. Shanghai: Shanghai Jiao Tong University, 2008: 33-37 (in Chinese). |
/
〈 |
|
〉 |