小型无人直升机故障估计与容错控制

  • 张晓龙 ,
  • 李荣 ,
  • 阎高伟 ,
  • 肖舒怡 ,
  • 李国强
展开
  • 1. 太原理工大学
    2. 中国辐射防护研究院

收稿日期: 2024-06-06

  修回日期: 2024-08-12

  网络出版日期: 2024-08-20

基金资助

国家自然科学基金;山西省应用基础研究计划;山西省科技重大专项计划“揭榜挂帅”项目;国网山西省电力公司科技项目

Fault estimation and fault tolerant control for small unmanned helicopters

  • ZHANG Xiao-Long ,
  • LI Rong ,
  • YAN Gao-Wei ,
  • XIAO Shu-Yi ,
  • LI Guo-Qiang
Expand

Received date: 2024-06-06

  Revised date: 2024-08-12

  Online published: 2024-08-20

摘要

本文针对小型无人直升机发生故障时导致周期变距响应不足的问题,设计了一种基于滑模观测器的滑模容错控制方法。首先,设计具有规定性能指标的滑模观测器估计无人直升机纵向横向系统的状态信息,并利用等效输出误差注入原理获取周期变距故障的具体信息。然后,基于周期变距故障信息设计了滑模容错控制器来保证系统的跟踪性能。最后,通过数值仿真来验证了基于滑模观测器的滑模容错控制方案的有效性。仿真结果表明,设计的滑模容错控制器能够保证外部扰动和周期变距故障综合作用下的无人直升机纵向横向系统跟踪控制性能。

本文引用格式

张晓龙 , 李荣 , 阎高伟 , 肖舒怡 , 李国强 . 小型无人直升机故障估计与容错控制[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2024.30802?

Abstract

In this paper, a sliding-mode fault-tolerant control method based on sliding-mode observer is designed for the problem of insufficient cyclic pitch response caused by the occurrence of faults in small unmanned helicopters. First, a sliding mode observer with specified performance index is designed to estimate the state information of the unmanned helicopter's longitudinal and lateral systems, and the equivalent output error injection principle is utilized to obtain the specific information of the cyclic pitch fault. Then, a sliding mode fault-tolerant controller is designed based on the cyclic pitch fault information to ensure the tracking performance of the system. Finally, the effectiveness of the sliding mode fault-tolerant control scheme based on the sliding mode observer is verified by numerical simulation. The simulation results show that the designed sliding mode fault-tolerant controller can guarantee the tracking control performance of the unmanned helicopter longitudinal and lateral system under the combined effect of external perturbations and cyclic pitch faults.

参考文献

[1] 陈谋,马浩翔,雍可南,等.无人机安全飞行控制综述[J].机器人, 2023, 45(3): 345-366.
CHEN M, MA H X, YONG K N, et al. Safety flight control of UAV: a survey[J]. Robot, 2023, 45(3): 345-366 (in Chinese).
[2] 闫超,涂良辉,王聿豪,等.无人机在我国民用领域应用综述[J].飞行力学, 2022, 40(3): 1-6.
YAN C, TU L H, WANG Y H, et al. Application of unmanned aerial vehicle in civil field in China[J]. Flight Dynamics, 2022, 40(3): 1-6 (in Chinese).
[3] 罗俊海,王芝燕.无人机探测与对抗技术发展及应用综述[J].控制与决策, 2022, 37(3): 530-544.
LUO J H, WANG Z Y. A review of development and application of UAV detection and counter technology [J]. Control and Decision, 2022, 37(3): 530-544 (in Chinese).
[4] 徐燕翔,裴海龙.基于无人机的森林火灾检测系统[J].计算机工程与设计,2018,39(6):1591-1596+1618.
XU Y X, PEI H L. Forest fire detection system based on unmanned aerial vehicle[J]. Computer Engineering and Design, 2018,39(6):1591-1596+1618 (in Chinese).
[5] 陈传琪.无人直升机传感器和执行器故障的类型与分析[J]. 无人机, 2022, 93(4).
CHEN C Q. Analysis and type of the sensor and actuator fault of unmanned helicopter [J]. Unmanned Vehicles, 2022, 93(4) (in Chinese).
[6] SHAO S Y, CHEN M, ZHANG Y M. Adaptive discrete-time flight control using disturbance observer and neural networks [J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(12): 3708-3721.
[7] CHEN H T, JIANG B, LU N Y. A newly robust fault detection and diagnosis method for high-speed trains[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(6): 2198-2208.
[8] CHEN H T, JIANG B, Lu N Y, et al. Deep PCA based real-time incipient fault detection and diagnosis methodology for electrical drive in high-speed trains[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 4819-4830.
[9] MOKHTARI S, ABBASPOUR A, YEN K K, et al. Neural network-based active fault-tolerant control de-sign for unmanned helicopter with additive faults[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 13(12): 2396.
[10] WANG B, YU X, MU L X, et al. Disturbance observer-based adaptive fault-tolerant control for a quadrotor helicopter subject to parametric uncertainties and ex-ternal disturbances[J]. Mechanical Systems and Signal Processing, 2019, 120: 727-743.
[11] YANG H L, JIANG B, LIU H T, et al. Attitude synchronization for multiple 3-DOF helicopters with actuator faults[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(2): 597-608.
[12] NEJATI Z, FARAJI A. Actuator fault detection and isolation for helicopter unmanned arial vehicle in the present of disturbance [J]. International Journal of Engineering, 2021, 34(3): 676-681.
[13] 邵书义,陈谋,招启军.基于干扰观测器的四旋翼无人机离散时间容错控制[J].航空学报, 2020, 41(S2): 89-97.
SHAO S Y, CHEN M, ZHAO Q J. Discrete-time fault-tolerant control for quadrotor UAV based on disturbance observer[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 89-97 (in Chinese).
[14] 于彦波,胡庆雷,董宏洋,等.执行器故障与饱和受限的航天器滑模容错控制[J].哈尔滨工业大学学报,2016,48(4):20-25.
YU Y B, HU Q L, DONG H Y, et al. Sliding mode fault tolerant control for spacecraft under actuator fault and saturation[J]. Journal of Harbin Institute of technology, 2016, 48(4): 20-25 (in Chinese).
[15] 方星,吴爱国,董娜.非匹配扰动干扰下的无人直升机轨迹跟踪控制[J].控制理论与应用,2015,32(10):1325-1334.
FANG X, WU A G, DONG N. Robust trajectory tracking control for unmanned helicopter with mismatched disturbances[J]. Control Theory & Applications, 2015,32(10):1325-1334 (in Chinese).
[16] Shen G H, Xia Y Q, Ma D L, et al. Adaptive sliding‐mode control for Mars entry trajectory tracking with finite‐time convergence[J]. International Journal of Robust and Nonlinear Control, 2019, 29(5): 1249-1264.
[17] SHAO X D, HU Q L, SHI Y, et al. Fault-tolerant pre-scribed performance attitude tracking control for spacecraft under input saturation[J]. IEEE Transactions on Control Systems Technology, 2018, 28(2): 574-582.
[18] HU Q L, LI B, et al. Finite-time fault-tolerant space-craft attitude control with torque saturation[J]. Control Allocation for Spacecraft Under Actuator Faults, 2021: 73-108.
[19] GAO H, XIA Y Q, ZHANG J H, et al. Finite‐time fault‐tolerant output feedback attitude control of space-craft formation with guaranteed performance[J]. Inter-national Journal of Robust and Nonlinear Control, 2021, 31(10): 4664-4688.
[20] SHAO X L, SHI Y, ZHANG W D. Fault-tolerant quan-tized control for flexible air-breathing hypersonic vehi-cles with appointed-time tracking performances[J]. IEEE Transactions on Aerospace and Electronic Sys-tems, 2020, 57(2): 1261-1273.
[21] YAN K, REN H P. Fault identification and fault-tolerant control for unmanned autonomous helicopter with global neural finite-time convergence[J]. Neuro-computing, 2021, 459: 165-175.
[22] FU J, CHEN W H, WU Q X. Chattering‐free sliding mode control with unidirectional auxiliary surfaces for miniature helicopters[J]. IEEE Transactions on Control Systems Technology, 2012, 20(4): 995-1010.
[23] RAPTIS I A, VALAVANIS K P, VACHTSEVANOS G J. Linear tracking control for small-scale unmanned helicopters[J]. IEEE Transactions on Control Systems Technology, 2012, 20(4): 995-1010.
[24] ZHANG J, SWAIN A K, NGUANG S K. Robust sliding mode observer based fault estimation for certain class of uncertain nonlinear systems[J]. Asian Journal of Control, 2015, 17(4): 1296-1309.
[25] YAN X G, EDWARDS C. Robust sliding mode observer-based actuator fault detection and isolation for a class of nonlinear systems[J]. International Journal of Systems Science, 2008, 39(4): 349-359.
[26] UTKIN V. I, Sliding Modes in Control Optimization[M]. Springer Verlag, 1992: 64-65.
[27] LI R, CHEN M, WU Q X. Robust control for an un-manned helicopter with constrained flapping dynamics[J]. Chinese Journal of Aeronautics, 2018, 31(11): 2136-2148.
[28] XIAN B, GUO J C, ZHANG Y, et al. Sliding mode tracking control for miniature unmanned helicopters[J]. Chinese Journal of Aeronautics, 2015, 28(1): 277-284.
[29] YAN X G, EDWARDS C. Nonlinear robust fault re-construction and estimation using a sliding mode observer[J]. Automatica, 2008, 43(9): 1605-1614.
[30] 孙秀云,方勇纯,孙宁.小型无人直升机的姿态与高度自适应反步控制[J].控制理论与应用,2012,29(3):381-388.
SUN X Y, FANG Y C, SUN N. Backstepping-based adaptive attitude and height control of a small-scale unmanned helicopter [J]. Control Theory & Applications, 2012,29(3):381-388 (in Chinese).
文章导航

/