电子电气工程与控制

基于A*算法的摄动Lambert同伦迭代方法

  • 谢聪 ,
  • 杨震 ,
  • 梁彦刚
展开
  • 1.国防科技大学 空天科学学院,长沙 410073
    2.国防科技大学 空天任务智能规划与仿真湖南省重点实验室,长沙 410073
.E-mail: yangzhen@nudt.edu.cn

收稿日期: 2024-06-04

  修回日期: 2024-07-03

  录用日期: 2024-08-05

  网络出版日期: 2024-08-20

基金资助

国家自然科学基金(12372052);湖南省自然科学基金(2023JJ20047);载人航天工程科技创新团队项目(2021-JCJQ-QT-047)

Homotopic perturbed lambert algorithm based on A* algorithm

  • Cong XIE ,
  • Zhen YANG ,
  • Yangang LIANG
Expand
  • 1.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
    2.Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Missions,National University of Defense Technology,Changsha 410073,China

Received date: 2024-06-04

  Revised date: 2024-07-03

  Accepted date: 2024-08-05

  Online published: 2024-08-20

Supported by

National Natural Science Foundation of China(12372052);Natural Science Foundation of Hunan Province(2023JJ20047);the Young Ellite Scientists Sponsorslip Program(2021-JCJQ-QT-047)

摘要

摄动Lambert问题是航天器交会对接、在轨维修等任务的基础问题。由于摄动Lambert问题没有解析解,仅能通过迭代计算得出数值解,因此现有方法主要针对迭代收敛性与计算效率进行改进。在现有同伦迭代的基础上,引入通用图搜索A*算法思想,提出了剪枝同伦迭代方法。首先,将当前末位置偏差到初速度增益的状态转移矩阵梯度方向与目标方向结合得到迭代方向,设计了基于A*算法的同伦映射;其次,基于泰勒展开设计了线性摄动矩阵,实现了对末位置发散路径的剪枝,解决了牛顿打靶法、拟线性化等传统方法无法排除初速度发散的无效迭代问题。仿真结果表明,本方法在保证获得最优解的同时较现有同伦法提升25%以上的计算效率,具有更大的收敛范围;同时本方法具有良好的初值收敛特性,地月三体系统轨道转移案例较拟线性化方法提升30%以上计算效率。

本文引用格式

谢聪 , 杨震 , 梁彦刚 . 基于A*算法的摄动Lambert同伦迭代方法[J]. 航空学报, 2025 , 46(4) : 330780 -330780 . DOI: 10.7527/S1000-6893.2024.30780

Abstract

Perturbed Lambert Problem forms the fundamental basis for tasks such as spacecraft rendezvous and on-orbit servicing. Due to the lack of an analytical solution for the perturbed Lambert problem, numerical solutions can only be obtained through iterative computations. Consequently, existing methods primarily focus on improving iteration convergence and computational efficiency. Building upon current homotopic iteration methods, this paper introduces the general concept of the A* algorithm for graph search and proposes a pruned homotopic iteration approach. Firstly, by combining the gradient direction of the state transition matrix from the terminal position error to the initial velocity increment with the target direction, an iteration direction is derived, and a homotopic mapping based on the A* algorithm is designed. Secondly, utilizing Taylor expansion, a linear perturbation matrix is devised, enabling pruning of divergent end-position paths. This addresses the issue of ineffective iterations due to initial velocity divergence that conventional methods such as Newton’s shooting method and quasi-linearization fail to exclude. Simulation results demonstrate that while ensuring the attainment of optimal solutions, our proposed method improves computational efficiency by over 25%, compared to existing homotopic methods, featuring a broader convergence range. Moreover, the method exhibits favorable characteristics regarding initial value convergence. In the case of orbit transfer in the Earth-Moon three-body system, it achieves more than a 30% increase in computational efficiency compared to quasi-linearization techniques.

参考文献

1 张洪波, 郑伟, 汤国建. 采用打靶法设计考虑地球扁率的机动轨道[J]. 宇航学报200829(4): 1177-1181.
  ZHANG H B, ZHENG W, TANG G J. Maneuver trajectory design with J2Correction based on shooting procedure[J]. Journal of Astronautics200829(4): 1177-1181 (in Chinese).
2 冯浩阳, 汪雪川, 岳晓奎, 王昌涛. 航天器轨道递推及Lambert 问题计算方法综述[J]. 航空学报202344(13): 028027.
  FENG H Y, WANG X C, YUE X K, et al. A survey of computational methods for spacecraft orbit propagation and Lambert problems[J]. Acta Aeronautica et Astronautica Sinica202344(13): 028027 (in Chinese).
3 KELLER H B. Numerical solution of two point boundary value problems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1976: 15-19.
4 LEE E S. Quasilinearization and invariant imbedding, with applications to chemical engineering and adaptive control[M]. New York: Academic Press, 1968:30-35.
5 REINHARDT H J. Analysis of approximation methods for differential and integral equations[M]. New York: Springer New York, 1985:10-15.
6 YANG Z, LUO Y Z, ZHANG J, et al. Homotopic perturbed lambert algorithm for long-duration rendezvous optimization[J]. Journal of Guidance, Control, and Dynamics201538(11): 2215-2223.
7 CHARTIER P, PHILIPPE B. A parallel shooting technique for solving dissipative ODE’s[J]. Computing199351(3): 209-236.
8 伍佩钰. 非线性方程组的非精确Broyden方法[D]. 长沙: 长沙理工大学, 2017: 1-10.
  WU P Y. Inexact Broyden method for nonlinear equations[D]. Changsha: Changsha University of Science & Technology, 2017: 1-10. (in Chinese).
9 张雷, 曾蓉, 陈聆. 非线性最优控制计算方法及其应用[M]. 北京: 科学出版社, 2015: 116-128.
  ZHANG L, ZENG R, CHEN L. Calculation method of nonlinear optimal control and its application[M]. Beijing: Science Press, 2015: 116-128 (in Chinese).
10 彭坤, 彭睿, 黄震 等. 求解最优月球软着陆的隐式打靶法[J]. 宇航学报201940(7): 322-641.
  PENG K, PENG R, HUANG Z, et al. Implicit shooting method to solve optimal lunar soft landing trajectory[J]. Acta Aeronautica et Astronautica Sinica201940(7): 322-641 (in Chinese).
11 崔文豪. J2摄动下的卫星编队队形重构与队形保持方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019: 27-34.
  CUI W H. Research on formation reconstruction and formation maintenance of satellite formation under J2 perturbation[D].Harbin: Harbin Engineering University, 2019: 27-34. (in Chinese).
12 FITZGERALD R M. Counting lambert’s problem solutions in the circular-restricted three-body problem: AIAA-2024-0204[R]. Reston: AIAA, 2024.
13 张哲, 代洪华, 冯浩阳, 等. 初值约束与两点边值约束轨道动力学方程的快速数值计算方法[J]. 力学学报202254(2): 503-516.
  ZHANG Z, DAI H H, FENG H Y, et al. Efficient numerical method for orbit dynamic functions with initial value and two-point boundary-value constraints[J]. Chinese Journal of Theoretical and Applied Mechanics202254(2): 503-516 (in Chinese).
14 冯浩阳, 岳晓奎, 汪雪川. 大范围收敛的摄动Lambert问题新型解法: 拟线性化-局部变分迭代法[J]. 航空学报202142(11): 524699.
  FENG H Y, YUE X K, WANG X C. A novel quasi linearization-local variational iteration method with large convergence domain for solving perturbed Lambert’s problem[J]. Acta Aeronautica et Astronautica Sinica202142(11): 524699 (in Chinese).
15 WAWRZYNIAK G G, HOWELL K C. Generating solar sail trajectories in the Earth-Moon system using augmented finite-difference methods[J]. International Journal of Aerospace Engineering20112011: 476197.
16 WATSON L T. Globally convergent homotopy algorithms for nonlinear systems of equations[J]. Nonlinear Dynamics19901(2): 143-191.
17 LIU C S, YEIH W, KUO C L, et al. A scalar homotopy method for solving an Over/Under-determined system of non-linear algebraic equations[J]. CMES-Computer Modeling in Engineering and Sciences200953(1): 47-71.
18 ARMELLIN R, GONDELACH D, JUAN J F SAN. Multiple revolution perturbed lambert problem solvers[J]. Journal of Guidance, Control, and Dynamics201841(9): 2019-2032.
19 郭铁丁. 深空探测小推力轨迹优化的间接法与伪谱法研究[D]. 北京: 清华大学, 2012: 20-21.
  GUO T D. Research on indirect method and pseudo-spectral method for small thrust trajectory optimization in deep space exploration[D].Beijing: Tsinghua University, 2012: 20-21. (in Chinese).
20 PAN X, PAN B F. Practical homotopy methods for finding the best minimum-fuel transfer in the circular restricted three-body problem[J]. IEEE Access20208: 47845-47862.
21 潘迅, 泮斌峰. 基于同伦方法三体问题小推力推进转移轨道设计[J]. 深空探测学报20174(3): 270-275.
  PAN X, PAN B F. Optimization of low-thrust transfers using homotopic method in the restricted three-body problem[J]. Journal of Deep Space Exploration20174(3): 270-275 (in Chinese).
22 HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics19684(2): 100-107.
23 杨震, 罗亚中, 张进 等. 基于状态转移张量的非线性轨道偏差演化分析方法[C]∥中国非线性动力学与运动稳定性大会. 南京: 中国振动工程会, 2015.
  YANG Z, LUO Y Z, ZHANG J. Nonlinear orbit deviation evolution analysis method based on state transition tensor[C]∥China Conference on nonlinear Dynamics and Motion Stability. Nanjing: Chinese Society for Vibration Engineering, 2015 (in Chinese).
24 VINTI J P. Orbital and Celestial Mechanics[M]. Reston,: AIAA, 1998: 100-105.
25 赵育善, 师鹏, 张晨. 深空飞行动力学[M]. 北京: 中国宇航出版社, 2016: 155-165.
  ZHAO Y S, SHI P, ZHANG C. Deep space flight dynamics[M]. Beijing: Chinese Astronautic Press, 2016: 155-165 (in Chinese).
文章导航

/