基于分解优化并行ESN的氢燃料电池寿命预测
收稿日期: 2024-05-17
修回日期: 2024-06-11
录用日期: 2024-07-24
网络出版日期: 2024-08-20
基金资助
国家自然科学基金(52307251);中国博士后科学基金(2023TQ0277)
Lifespan prediction of hydrogen fuel cell based on decomposition optimization parallel ESN
Received date: 2024-05-17
Revised date: 2024-06-11
Accepted date: 2024-07-24
Online published: 2024-08-20
Supported by
National Natural Science Foundation of China(52307251);China Postdoctoral Science Foundation(2023TQ0277)
针对质子交换膜燃料电池(PEMFC)多时间尺度老化特性导致电压预测精度较低的问题,基于集成经验模态分解(EEMD)与循环系统优化(CSBO)方法,提出了一种并行回声状态网络(PESN)结构,提升了PEMFC的寿命预测精度。采用EEMD对原始电压信号进行模态分解,将不同时刻的历史数据及分解得到的不同频率信号作为ESN不同子蓄水池的并行输入,构建一种按权重分配叠加输出的并行ESN结构,利用CSBO优化并行ESN结构的相关参数,基于优化后的EPESN模型实现PEMFC未来数百小时输出电压的预测。在稳态和准动态70%的数据训练集下,EPESN比ESN的均方根误差分别降低了34.25%和47.41%。在动态1训练时长为300 h时,EPESN比ESN的均方根误差降低了15.30%。结果表明:EPESN结构能够提高PEMFC寿命的预测精度。
华志广 , 潘诗媛 , 赵冬冬 , 李祥隆 , 窦满峰 . 基于分解优化并行ESN的氢燃料电池寿命预测[J]. 航空学报, 2025 , 46(2) : 330696 -330696 . DOI: 10.7527/S1000-6893.2024.30696
Aiming at the problem of low voltage prediction accuracy caused by multi-time-scale aging characteristics of Proton Exchange Membrane Fuel Cell (PEMFC), a Parallel Echo State Network (PESN) structure which based on Ensemble Empirical Mode Decomposition (EEMD) and Circulatory System based Optimization (CSBO) is proposed to improve the lifespan prediction accuracy of PEMFC. By utilizing EEMD to conduct modal decomposition on the original voltage signal, the historical data from various time points and the decomposed signals with distinct frequencies are taken as the parallel inputs for the different sub-reservoirs of ESN, thereby establishing a parallel ESN structure that allocates and superimposes outputs based on weights. The CSBO is then leveraged to optimize the relevant parameters of the parallel ESN structure. Subsequently, utilizing the optimized EPESN model, the prediction of the output voltage of PEMFC for the next several hundred hours is achieved. Specifically, under the steady-state and quasi-dynamic data training sets at 70%, the Root Mean Square Error (RMSE) of EPESN is reduced by 34.25% and 47.41% respectively, compared to that of ESN. Furthermore, when the dynamic 1 training duration is set at 300 h, the RMSE of EPESN is decreased by 15.30% compared to ESN. The results explicitly demonstrate that the EPESN structure is capable of enhancing the prediction accuracy for the lifespan of PEMFC.
1 | 雷涛, 闵志豪, 付红杰, 等. 燃料电池无人机混合电源动态平衡能量管理策略[J]. 航空学报, 2020, 41( 12): 324048. |
LEI T, MIN Z H, FU H J, et al. Dynamic balanced energy management strategies for fuel-cell hybrid power system of unmanned air vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41( 12): 324048 (in Chinese). | |
2 | DIJOUX E, STEINER N Y, BENNE M, et al. Experimental validation of an active fault tolerant control strategy applied to a proton exchange membrane fuel cell[J]. Electrochem, 2022, 3( 4): 633- 652. |
3 | 任圆圆, 许亮, 蔡远利. 质子交换膜燃料电池剩余使用寿命预测研究进展[J]. 电源技术, 2023, 47( 8): 984- 988. |
REN Y Y, XU L, CAI Y L. Progress on remaining useful life prediction of proton exchange membrane fuel cell[J]. Chinese Journal of Power Sources, 2023, 47( 8): 984- 988 (in Chinese). | |
4 | YUE M L, JEMEI S, ZERHOUNI N, et al. Proton exchange membrane fuel cell system prognostics and decision-making: Current status and perspectives[J]. Renewable Energy, 2021, 179: 2277- 2294. |
5 | LIU J W, LI Q, HAN Y, et al. PEMFC residual life prediction using sparse autoencoder-based deep neural network[J]. IEEE Transactions on Transportation Electrification, 2019, 5( 4): 1279- 1293. |
6 | ZHAO Y, LUO M J, YANG J W, et al. Numerical analysis of PEMFC stack performance degradation using an empirical approach[J]. International Journal of Hydrogen Energy, 2024, 56: 147- 163. |
7 | 李奇, 刘嘉蔚, 陈维荣. 质子交换膜燃料电池剩余使用寿命预测方法综述及展望[J]. 中国电机工程学报, 2019, 39( 8): 2365- 2375. |
LI Q, LIU J W, CHEN W R. Review and prospect of remaining useful life prediction methods for proton exchange membrane fuel cell[J]. Proceedings of the CSEE, 2019, 39( 8): 2365- 2375 (in Chinese). | |
8 | 赵冬冬, 赵国胜, 夏磊, 等. 无人机用燃料电池阴极供气系统建模与控制[J]. 航空学报, 2021, 42( 7): 324659. |
ZHAO D D, ZHAO G S, XIA L, et al. Modeling and control of fuel cell cathode gas supply system for UAV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42( 7): 324659 (in Chinese). | |
9 | YAN C Z, CHEN J, LIU H, et al. Health management for PEM fuel cells based on an active fault tolerant control strategy[J]. IEEE Transactions on Sustainable Energy, 2021, 12( 2): 1311- 1320. |
10 | MA R, XIE R Y, XU L C, et al. A hybrid prognostic method for PEMFC with aging parameter prediction[J]. IEEE Transactions on Transportation Electrification, 2021, 7( 4): 2318- 2331. |
11 | ZHENG L, HOU Y P, ZHANG T, et al. Performance prediction of fuel cells using long short-term memory recurrent neural network[J]. International Journal of Energy Research, 2021, 45( 6): 9141- 9161. |
12 | CHEN K, LAGHROUCHE S, DJERDIR A. Degradation prediction of proton exchange membrane fuel cell based on grey neural network model and particle swarm optimization[J]. Energy Conversion & Management, 2019, 195( S1): 810- 818. |
13 | ZHU L, CHEN J. Prognostics of PEM fuel cells based on Gaussian process state space models[J]. Energy, 2018, 149: 63- 73. |
14 | REZK H, WILBERFORCE T, SAYED E T, et al. Finding best operational conditions of PEM fuel cell using adaptive neuro-fuzzy inference system and metaheuristics[J]. Energy Reports, 2022, 8: 6181- 6190. |
15 | DENG Z H, CHAN S H, CHEN Q H, et al. Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system[J]. Applied Energy, 2023, 331: 120385. |
16 | LIU J W, LI Q, CHEN W R, et al. Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks[J]. International Journal of Hydrogen Energy, 2019, 44( 11): 5470- 5480. |
17 | JIN J S, CHEN Y P, XIE C J, et al. Degradation prediction of PEMFC based on data-driven method with adaptive fuzzy sampling[J]. IEEE Transactions on Transportation Electrification, 2024, 10( 2): 3363- 3372. |
18 | LI S Y, LUAN W L, WANG C, et al. Degradation prediction of proton exchange membrane fuel cell based on Bi-LSTM-GRU and ESN fusion prognostic framework[J]. International Journal of Hydrogen Energy, 2022, 47( 78): 33466- 33478. |
19 | LI Z L, ZHENG Z X, OUTBIB R. Adaptive prognostic of fuel cells by implementing ensemble echo state networks in time-varying model space[J]. IEEE Transactions on Industrial Electronics, 2020, 67( 1): 379- 389. |
20 | MEZZI R, YOUSFI-STEINER N, PéRA M C, et al. An Echo State Network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile[J]. Applied Energy, 2021, 283: 116297. |
21 | MORANDO S, JEMEI S, HISSEL D, et al. ANOVA method applied to proton exchange membrane fuel cell ageing forecasting using an echo state network[J]. Mathematics and Computers in Simulation, 2017, 131: 283- 294. |
22 | GHASEMI M, AKBARI M A, JUN C, et al. Circulatory System Based Optimization (CSBO): An expert multilevel biologically inspired meta-heuristic algorithm[J]. Engineering Applications of Computational Fluid Mechanics, 2022, 16( 1): 1483- 1525. |
23 | HUA Z G, ZHENG Z X, PAHON E, et al. Remaining useful life prediction of PEMFC systems under dynamic operating conditions[J]. Energy Conversion and Management, 2021, 231: 113825. |
/
〈 |
|
〉 |