固体力学与飞行器总体设计

划痕缺陷对30Ni4CrMoA试样疲劳寿命影响的试验与理论模型

  • 张梦伟 ,
  • 胡伟平 ,
  • 徐海斌 ,
  • 马占齐 ,
  • 詹志新 ,
  • 孟庆春
展开
  • 1.北京航空航天大学 航空科学与工程学院,北京 100191
    2.强度与结构完整性全国重点实验室,北京 100191
    3.哈尔滨飞机工业集团有限责任公司,哈尔滨 150066

收稿日期: 2024-05-28

  修回日期: 2024-06-24

  录用日期: 2024-07-24

  网络出版日期: 2024-08-10

基金资助

国家自然科学基金(12002011)

Experimental and theoretical model study on influence of scratch defects on fatigue life of 30Ni4CrMoA sample

  • Mengwei ZHANG ,
  • Weiping HU ,
  • Haibin XU ,
  • Zhanqi MA ,
  • Zhixin ZHAN ,
  • Qingchun MENG
Expand
  • 1.School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China
    2.National Key Laboratory of Strength and Structural Integrity,Beijing 100191,China
    3.Harbin Aircraft Industry Group Co. ,Ltd. ,Harbin 150066,China

Received date: 2024-05-28

  Revised date: 2024-06-24

  Accepted date: 2024-07-24

  Online published: 2024-08-10

Supported by

National Natural Science Foundation of China(12002011)

摘要

制备了30Ni4CrMoA高强度结构钢的光滑试样以及不同划痕深度缺陷的试验件,并对这些试验件进行了疲劳试验测试,获得了含不同深度划痕缺陷和不同应力水平下试验件的疲劳寿命。基于连续损伤力学理论,在原有高周疲劳损伤演化方程的基础上,根据划痕根部最大应力分析与划痕深度的关系,以及试样疲劳寿命随划痕深度和应力水平的变化规律,提出了一种综合考虑划痕深度和应力水平影响的划痕影响系数表达式,建立了一种新的考虑划痕影响的等效疲劳损伤演化方程。基于该方程,无需建立划痕的有限元模型,直接采用闭合解法根据积分形式的疲劳寿命表达式即可对含划痕的30Ni4CrMoA试样进行疲劳寿命预估,理论预测结果与试验结果吻合很好,验证了所提方法的有效性和适用性。最后,还讨论了划痕影响系数与缺口疲劳系数的关系,以及划痕根部应力梯度的影响。

本文引用格式

张梦伟 , 胡伟平 , 徐海斌 , 马占齐 , 詹志新 , 孟庆春 . 划痕缺陷对30Ni4CrMoA试样疲劳寿命影响的试验与理论模型[J]. 航空学报, 2025 , 46(3) : 230743 -230743 . DOI: 10.7527/S1000-6893.2024.30743

Abstract

The smooth samples of 30Ni4CrMoA high strength structural steel and the test parts with depth scratch defects of different depths were prepared, and the fatigue life of the test parts with scratch defects of different depths and different stress levels were obtained. Based on the theory of continuous damage mechanics and the original high-cycle fatigue damage evolution equation, an expression for influence of scratch coefficient was proposed, which comprehensively considered the influences of scratch depth and stress level, according to the relationship between the maximum stress analysis at scratch root and scratch depth, as well as the change law of sample fatigue life with scratch depth and stress level. A new equivalent fatigue damage evolution equation considering the effects of scratches was established. Based on this equation, the fatigue life of 30Ni4CrMoA sample with scratches can be predicted by the closed solution directly according to the fatigue life expression in the integral form, without establishing the finite element model of scratches. The theoretical prediction results are in good agreement with the experimental results, which verifies the effectiveness and applicability of the proposed method. Finally, the relationship between the scratch influence coefficient and notch fatigue coefficient and the influence of stress gradient at scratch root were discussed.

参考文献

1 ZHANG X S, MA Y E, YANG M, et al. A review of in-plane biaxial fatigue behavior of metallic materials[J]. Theoretical and Applied Fracture Mechanics2023123: 103726.
2 WU K L, LI B, GUO J J. Fatigue crack growth and fracture of internal fixation materials in environments-a review[J]. Materials202114(1): 176.
3 MA Y F, GUO Z Z, WANG L, et al. Probabilistic life prediction for reinforced concrete structures subjected to seasonal corrosion-fatigue damage[J]. Journal of Structural Engineering2020146(7): 04020117.
4 MAKINO T, KATO T, HIRAKAWA K. Review of the fatigue damage tolerance of high-speed railway axles in Japan[J]. Engineering Fracture Mechanics201178(5): 810-825.
5 ZERBST U, BERETTA S, K?HLER G, et al. Safe life and damage tolerance aspects of railway axles-A review[J]. Engineering Fracture Mechanics201398: 214-271.
6 ZERBST U, MADIA M, KLINGER C, et al. Defects as a root cause of fatigue failure of metallic components. Ⅲ: Cavities, dents, corrosion pits, scratches[J]. Engineering Failure Analysis201997: 759-776.
7 YANG S S, HU W P, LI J, et al. Fatigue tests and damage model development on Al-Si-Mg aluminum alloys with low-velocity impact pit[J]. International Journal of Fatigue2021153: 106466.
8 ZHAN Z X, HU W P, ZHANG M, et al. The fatigue life prediction for structure with surface scratch considering cutting residual stress, initial plasticity damage and fatigue damage[J]. International Journal of Fatigue201574: 173-182.
9 WU S C, XU Z W, KANG G Z, et al. Probabilistic fatigue assessment for high-speed railway axles due to foreign object damages[J]. International Journal of Fatigue2018117: 90-100.
10 SONG J H, AREIAS P M A, BELYTSCHKO T. A method for dynamic crack and shear band propagation with phantom nodes[J]. International Journal for Numerical Methods in Engineering200667(6): 868-893.
11 INCE A, GLINKA G, BUCZYNSKI A. Computational modeling of multiaxial elasto-plastic stress-strain response for notched components under non-proportional loading[J]. International Journal of Fatigue201462: 42-52.
12 LIM J, HONG S, LEE S. Application of local stress–strain approaches in the prediction of fatigue crack initiation life for cyclically non-stabilized and non-Masing steel[J]. International Journal of Fatigue200527(10-12): 1653-1660.
13 CHEN X, JIN D, KIM K S. A weight function-critical plane approach for low-cycle fatigue under variable amplitude multiaxial loading[J]. Fatigue & Fracture of Engineering Materials & Structures200629(4): 331-339.
14 SUSMEL L, TAYLOR D. A critical distance/plane method to estimate finite life of notched components under variable amplitude uniaxial/multiaxial fatigue loading[J]. International Journal of Fatigue201238: 7-24.
15 CHABOCHE J L. Continuous damage mechanics-A tool to describe phenomena before crack initiation[J]. Nuclear Engineering and Design198164(2): 233-247.
16 LEMAITRE J. A course on damage mechanics[M]. Berlin: Springer-Verlag, 1992: 11-19.
17 ZHAN Z X, HU W P, MENG Q C, et al. Fatigue life and defect tolerance calculation for specimens with foreign object impact and scratch damage[J]. Archive of Applied Mechanics201888(3): 373-390.
18 CINI A, IRVING P E. Development of fatigue cracks from mechanically machined scratches on 2024-T351 aluminium alloy-part I: Experimentation and fractographic analysis[J]. Fatigue & Fracture of Engineering Materials & Structures201740(5): 776-789.
19 INCHEKEL A, TALIA J E. Effect of scratches on the fatigue behavior of an al-li alloy[J]. Fatigue & Fracture of Engineering Materials & Structures199417(5): 501-507.
20 NISHIMURA Y, YANASE K, IKEDA Y, et al. Fatigue strength of spring steel with small scratches[J]. Fatigue & Fracture of Engineering Materials & Structures201841(7): 1514-1528.
21 XIAO Y. A continuum damage mechanics model for high cycle fatigue[J]. International Journal of Fatigue199820(7): 503-508.
22 SHEN F, HU W P, MENG Q C. New approach based on continuum damage mechanics with simple parameter identification to fretting fatigue life prediction[J]. Applied Mathematics and Mechanics201536(12): 1539-1554.
23 YANG S S, HU W P, ZHAN Z X, et al. Fatigue tests and a damage mechanics-based fatigue model on a cast Al-Si-Mg aluminum alloy with scratches[J]. International Journal of Fatigue2022165: 107198.
24 高同州, 贺小帆, 王晓雷, 等. 基于CDM理论与SVM模型的2014-T6铝合金疲劳寿命预测[J]. 航空学报202445(7): 228952.
  GAO T Z, HE X F, WANG X L, et al. Fatigue life prediction of 2014-T6 aluminum alloy based on CDM theory and SVM model[J]. Acta Aeronautica et Astronautica Sinica202445(7): 228952 (in Chinese).
25 陈蕴博, 张福成, 褚作明, 等. 钢铁材料组织超细化处理工艺研究进展[J]. 中国工程科学20035(1): 74-81.
  CHEN Y B, ZHANG F C, CHU Z M, et al. Advanced ultrafine technology of microstructure of iron and steel[J]. Strategic Study of CAE20035(1): 74-81 (in Chinese).
26 万响亮, 李光强, 周博文, 等. 奥氏体不锈钢晶粒细化对形变机制和力学性能的影响[J]. 材料工程201644(8): 29-33.
  WAN X L, LI G Q, ZHOU B W, et al. Effect of grain refinement on deformation Mechanism and Mechanical properties of austenitic stainless steel[J]. Journal of Materials Engineering201644(8): 29-33 (in Chinese).
27 NEUBER H. Theory of noth stress: Principle for exact calculation of strength with reference to structural form and material[M]. 2nd ed.Berlin: Spring-Verlag, 1958.
28 PETERSON R E. Metal fatigue: Notch-sensitivity[M].New York: McGraw-Hill, 1959:293-306.
29 MARMI A K, HABRAKEN A M, DUCHENE L. Multiaxial fatigue damage modelling at macro scale of Ti-6Al-4V alloy[J]. International Journal of Fatigue200931(11-12): 2031-2040.
30 石亮, 魏大盛, 王延荣. 考虑应力梯度的轮盘疲劳寿命预测[J]. 航空动力学报201328(6): 1236-1242.
  SHI L, WEI D S, WANG Y R. Fatigue life prediction of turbine disk based on stress gradient[J]. Journal of Aerospace Power201328(6): 1236-1242 (in Chinese).
文章导航

/