综述

航空结构低速冲击监测技术研究进展

  • 曾旭 ,
  • 邓德双 ,
  • 杨红娟 ,
  • 杨正岩 ,
  • 马书义 ,
  • 杨雷 ,
  • 武湛君
展开
  • 1.大连理工大学 力学与航空航天学院 工业装备结构分析优化与CAE软件全国重点实验室,大连 116024
    2.江南大学 纤维工程与装备技术学院,无锡 214122
    3.大连科技学院 交通与电气工程学院,大连 116052
    4.大连理工大学 材料科学与工程学院,大连 116024
.E-mail: yangl@dlut.edu.cn

收稿日期: 2024-03-09

  修回日期: 2024-04-05

  录用日期: 2024-06-12

  网络出版日期: 2024-07-31

基金资助

国家重点研发计划(2022YFB3402500);国家自然科学基金(U2341235)

Research progress in low-velocity impact monitoring technology for aircraft structures

  • Xu ZENG ,
  • Deshuang DENG ,
  • Hongjuan YANG ,
  • Zhengyan YANG ,
  • Shuyi MA ,
  • Lei YANG ,
  • Zhanjun WU
Expand
  • 1.State Key Laboratory of Structural Analysis,Optimization and CAE Software for Industrial Equipment,School of Mechanics and Aerospace Engineering,Dalian University of Technology,Dalian  116024,China
    2.School of Fiber Engineering and Equipment Technology,Jiangnan University,Wuxi  214122,China
    3.School of Transportation and Electrical Engineering,Dalian University of Science and Technology,Dalian  116052,China
    4.School of Materials Science and Engineering,Dalian University of Technology,Dalian  116024,China
E-mail: yangl@dlut.edu.cn

Received date: 2024-03-09

  Revised date: 2024-04-05

  Accepted date: 2024-06-12

  Online published: 2024-07-31

Supported by

National Key Research and Development Program of China(2022YFB3402500);National Natural Science Foundation of China(U2341235)

摘要

低速冲击对航空结构造成的潜在损伤严重威胁飞行器的飞行安全。冲击监测技术能够实时定位冲击源、重构载荷历程并估计冲击能量,是结构健康状态评估的关键技术,对于保障飞行器的服役安全具有重要意义。概述了冲击监测的一般流程;归纳了具有代表性的冲击定位方法,包括基于稀疏传感器阵列的时差法、时间反转聚焦法、参考数据库法和机器学习法,基于密集传感器阵列的波束成形法、传感器簇法、多重信号分类法和空间波数滤波器法,以及基于非波动信号的其他方法;总结了基于模型和机器学习的2种冲击载荷重构方法,以及冲击能量识别方法;结合冲击监测技术的现状,讨论了其面临的技术挑战并展望其发展趋势。

本文引用格式

曾旭 , 邓德双 , 杨红娟 , 杨正岩 , 马书义 , 杨雷 , 武湛君 . 航空结构低速冲击监测技术研究进展[J]. 航空学报, 2024 , 45(23) : 30368 -030368 . DOI: 10.7527/S1000-6893.2024.30368

Abstract

Low-velocity impacts pose a severe threat to aircraft flight safety by potentially damaging aerospace structures. Impact monitoring, which can locate the source of impacts in real time, reconstruct load histories, and estimate impact energy, is a key technology in structural health assessment, crucial for ensuring aircraft operation safety. This article provides an overview of the general process of the impact monitoring technology. Representative impact localization methods are summarized, including sparse sensor array based time difference methods, time reversal focusing methods, reference database methods and machine learning methods, dense sensor array based beamforming methods, sensor cluster methods, multiple signal classification methods, and spatial wavenumber filtering methods, as well as other non-wave signal based methods. Two categories of impact load reconstruction methods, i.e., model-based methods and machine learning methods, are discussed, along with methods for impact energy identification. Considering the current state of the impact monitoring technology, the article explores the technical challenges it faces and its future development trends.

参考文献

1 杜善义. 先进复合材料与航空航天[J]. 复合材料学报200724(1): 1-12.
  DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica200724(1): 1-12 (in Chinese).
2 寇天翔. 航空航天领域先进复合材料的应用探讨[J]. 中国高新科技2021(21): 112, 122.
  KOU T X. Discussion on application of advanced composite materials in aerospace field[J]. China High-Tech2021(21): 112, 122 (in Chinese).
3 王奕首, 卿新林. 复合材料连接结构健康监测技术研究进展[J]. 复合材料学报201633(1): 1-16.
  WANG Y S, QING X L. Progress on study of structural health monitoring technology for composite joints[J]. Acta Materiae Compositae Sinica201633(1): 1-16 (in Chinese).
4 GHOLIZADEH S. A review of impact behaviour in composite materials[C]∥the 10th International Conference on Mechanical and Aerospace Engineering Engineering. Piscataway: IEEE, 2019: 2071-2321.
5 WANG Y S, WANG M H, WU D, et al. Time series analysis and sparse sensor network-based impact monitoring for aircraft complex structures[J]. Structural Health Monitoring202322(6): 4069-4088.
6 YAN Y X, WANG M H, ZHANG Y, et al. A low-velocity impact localization method for composite stiffened plate based on AIC and WPT[J]. IEEE Sensors Journal202424(7): 10993-11002.
7 RICHARDSON M O W, WISHEART M J. Review of low-velocity impact properties of composite materials[J]. Composites Part A: Applied Science and Manufacturing199627(12): 1123-1131.
8 苏永振. 航空材料结构低速冲击健康监测研究[D]. 南京: 南京航空航天大学, 2010: 4-5.
  SU Y Z. Study on health monitoring of aviation material structure under low-speed impact[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2010: 4-5 (in Chinese).
9 KATUNIN A, PAWLAK S, WRONKOWICZ-KATUNIN A, et al. Damage progression in fibre reinforced polymer composites subjected to low-velocity repeated impact loading[J]. Composite Structures2020252: 112735.
10 CESTINO E, ROMEO G, PIANA P, et al. Numerical/experimental evaluation of buckling behaviour and residual tensile strength of composite aerospace structures after low velocity impact[J]. Aerospace Science and Technology201654: 1-9.
11 VANNIAMPARAMBIL P A, CARMI R, KHAN F, et al. An active-passive acoustics approach for bond-line condition monitoring in aerospace skin stiffener panels[J]. Aerospace Science and Technology201543: 289-300.
12 GIURGIUTIU V. Shm of aerospace composites-challenges and opportunities[C]∥The Composites and Advanced Materials Expo. Dallas: CAMX, 2015: 26-39.
13 SHAHDIN A, MORLIER J, NIEMANN H, et al. Correlating low energy impact damage with changes in modal parameters: Diagnosis tools and FE validation[J]. Structural Health Monitoring201110(2): 199-217.
14 ZHU K G, QING X P, LIU B. A two-step impact localization method for composite structures with a parameterized laminate model[J]. Composite Structures2018192: 500-506.
15 YANG H J, YANG L, YANG Z Y, et al. Ultrasonic detection methods for mechanical characterization and damage diagnosis of advanced composite materials: A review[J]. Composite Structures2023324: 117554.
16 JIN J, ZHU Y H, ZHANG Y B, et al. Micrometeoroid and orbital debris impact detection and location based on FBG sensor network using combined artificial neural network and mahalanobis distance method[J]. IEEE Transactions on Instrumentation and Measurement202170: 7005210.
17 ZHU K G, QING X P, LIU B, et al. A passive localization method for stiffened composite structures with a parameterized laminate model[J]. Journal of Sound and Vibration2020489: 115683.
18 QI L, ZENG Z M, SUN L C, et al. An impact location algorithm for spacecraft stiffened structure based on posterior possibility correlation[J]. Sensors202020(2): 368.
19 LIN M, CHANG F K. The manufacture of composite structures with a built-in network of piezoceramics[J]. Composites Science and Technology200262(7-8): 919-939.
20 QING X, BEARD S, KUMAR A, et al. Advances in the development of built-in diagnostic system for filament wound composite structures[J]. Composites Science and Technology200666(11-12): 1694-1702.
21 唐守锋, 熊克, 李刚. 压电智能夹层及其特性分析[J]. 传感器技术200524(7): 32-34.
  TANG S F, XIONG K, LI G. Piezoelectrics smart layer and analysis of its properties[J]. Transducer and Microsystem Technologies200524(7): 32-34 (in Chinese).
22 JIANG W S, DU L Y, LUO Z, et al. Impact localization with a weighted spectral cross correlation method[J]. Aerospace Science and Technology2022126: 107591.
23 赵刚, 李书欣, 刘立胜, 等. 应变片在复合材料低能量冲击定位中的应用[J]. 振动、 测试与诊断201838(3): 526-530.
  ZHAO G, LI S X, LIU L S, et al. Application of strain gauge in low energy impact location of composite materials[J]. Journal of Vibration, Measurement & Diagnosis, 201838(3): 526-530 (in Chinese).
24 HOSSAIN M S, ONG Z C, NG S C, et al. Inverse identification of impact locations using multilayer perceptron with effective time-domain feature[J]. Inverse Problems in Science and Engineering201826(3): 443-461.
25 ZHU C, XU Z Y, HOU C, et al. Flexible, monolithic piezoelectric sensors for large-area structural impact monitoring via MUSIC-assisted machine learning[J]. Structural Health Monitoring202423(1): 121-136.
26 朱臣. 多功能柔性压电器件设计制造及智能蒙皮应用[D]. 武汉: 华中科技大学, 2022: 5-6.
  ZHU C. Design and manufacture of multi-functional flexible piezoelectric devices and application of intelligent skin[D].Wuhan: Huazhong University of Science and Technology, 2022:5-6 (in Chinese).
27 AMBROZI?SKI ?, STEPINSKI T, UHL T. Efficient tool for designing 2D phased arrays in lamb waves imaging of isotropic structures[J]. Journal of Intelligent Material Systems and Structures201526(17): 2283-2294.
28 GUPTA V, SHARMA M, THAKUR N. Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: A technical review[J]. Journal of Intelligent Material Systems and Structures201021(12): 1227-1243.
29 STASZEWSKI W J, WORDEN K, WARDLE R, et al. Fail-safe sensor distributions for impact detection in composite materials[J]. Smart Materials and Structures20009(3): 298-303.
30 SCOTT M, WORDEN K. A bee swarm algorithm for optimising sensor distributions for impact detection on a composite panel[J]. Strain201551(2): 147-155.
31 MALLARDO V, ALIABADI M H, SHARIF KHODAEI Z. Optimal sensor positioning for impact localization in smart composite panels[J]. Journal of Intelligent Material Systems and Structures201324(5): 559-573.
32 MARKMILLER J F C, CHANG F K. Sensor network optimization for a passive sensing impact detection technique[J]. Structural Health Monitoring20109(1): 25-39.
33 DIPIETRANGELO F, NICASSIO F, SCARSELLI G. Structural health monitoring for impact localisation via machine learning[J]. Mechanical Systems and Signal Processing2023183: 109621.
34 彭涛, 崔立林, 黄秀峰, 等. 低信噪比下针对平板结构冲击的快速定位算法[J]. 振动与冲击202342(10): 180-187.
  PENG T, CUI L L, HUANG X F, et al. Fast localization algorithm for impact of flat plate structure under low SNR[J]. Journal of Vibration and Shock202342(10): 180-187 (in Chinese).
35 HAYWOOD J, COVERLEY P T, STASZEWSKI W J, et al. An automatic impact monitor for a composite panel employing smart sensor technology[J]. Smart Materials and Structures200514(1): 265-271.
36 WILLBERG C, DUCZEK S, VIVAR PEREZ J M, et al. Comparison of different higher order finite element schemes for the simulation of Lamb waves[J]. Computer Methods in Applied Mechanics and Engineering2012241-244: 246-261.
37 FELDMAN M. Hilbert transforms[M]. Amsterdam: Elsevier, 2001: 642-648.
38 张宇, 岳桂轩, 李欣颖, 等. 基于互相关碰撞强度谱的航天器碰撞定位技术[J]. 航天器环境工程202138(1): 7-16.
  ZHANG Y, YUE G X, LI X Y, et al. Impact positioning based on cross-correlation impact intensity map for spacecraft?[J]. Spacecraft Environment Engineering202138(1): 7-16 (in Chinese).
39 张阳, 杨宇, 齐舸, 等. 复合材料加筋结构冲击定位算法有效性分析[J]. 航空工程进展202314(4): 110-115.
  ZHANG Y, YANG Y, QI G, et al. Effectiveness analysis of impact location algorithm for composite reinforced structures[J]. Advances in Aeronautical Science and Engineering202314(4): 110-115 (in Chinese).
40 YANG X B, WANG K, ZHOU P Y, et al. Imaging damage in plate waveguides using frequency-domain multiple signal classification (F-MUSIC)[J]. Ultrasonics2022119: 106607.
41 WEN X L, SUN Q Z, LI W H, et al. Localization of low velocity impacts on CFRP laminates based on FBG sensors and BP neural networks[J]. Mechanics of Advanced Materials and Structures202229(26): 5478-5487.
42 郭松林, 王朝晖. 基于卷积神经网络的冲击地压微震定位法[J]. 电子测试2021(13): 67-69.
  GUO S L, WANG C H. Microseismic location method of rock burst based on convolutional neural network[J]. Electronic Test2021(13): 67-69 (in Chinese).
43 杨雷, 邓德双, 田广,等. 基于误差函数的复材加筋板概率成像冲击定位[J]. 振动测试与诊断202444(1): 88-93.
  YANG L, DENG D S, TIAN G, et al. Probabilistic imaging impact location of composite stiffened plates based on error function[J]. Journal of Vibration, Measurement & Diagnosis, 202444(1): 88-93 (in Chinese).
44 苏永振, 袁慎芳, 张炳良. 基于声发射和神经网络的复合材料冲击定位[J]. 传感器与微系统200928(9): 56-58, 61.
  SU Y Z, YUAN S F, ZHANG B L. Impact localization for composite based on acoustic emission and neural networks[J]. Transducer and Microsystem Technologies200928(9): 56-58, 61 (in Chinese).
45 路士增, 姜明顺, 隋青美, 等. 基于小波变换和支持向量多分类机的光纤布拉格光栅低速冲击定位系统[J]. 中国激光201441(3): 0305006.
  LU S Z, JIANG M S, SUI Q M, et al. Identification of impact location by using fiber Bragg grating based on wavelet transform and support vector classifiers[J]. Chinese Journal of Lasers201441(3): 0305006 (in Chinese).
46 ZHAO G, HU H X, LI S X, et al. Localization of impact on composite plates based on integrated wavelet transform and hybrid minimization algorithm[J]. Composite Structures2017176: 234-243.
47 PHAM D T, JI Z, PEYROUTET O, et al. Localisation of impacts on solid objects using the Wavelet Transform and Maximum Likelihood Estimation[M]∥Intelligent Production Machines and Systems. Amsterdam: Elsevier, 2006: 541-547.
48 LIU Q, WANG F D, LIU M X, et al. A two-step localization method using wavelet packet energy characteristics for low-velocity impacts on composite plate structures[J]. Mechanical Systems and Signal Processing2023188: 110061.
49 LU S Z, JIANG M S, SUI Q M, et al. Low velocity impact localization system of CFRP using fiber Bragg grating sensors[J]. Optical Fiber Technology201521: 13-19.
50 MEO M, ZUMPANO G, PIGGOTT M, et al. Impact identification on a sandwich plate from wave propagation responses[J]. Composite Structures200571(3-4): 302-306.
51 JEONG H, JANG Y S. Fracture source location in thin plates using the wavelet transform of dispersive waves[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control200047(3): 612-619.
52 ZHU X B. Aluminum alloy material structure impact localization by using FBG sensors[J]. Photonic Sensors20144(4): 344-348.
53 BENEDETTO J J. Noise reduction in terms of the theory of frames[M]∥Wavelet Analysis and Its Applications. Amsterdam: Elsevier, 1998: 259-284.
54 QIU L, LIU B, YUAN S F, et al. Impact imaging of aircraft composite structure based on a model-independent spatial-wavenumber filter[J]. Ultrasonics201664: 10-24.
55 邱雷, 袁慎芳, 苏永振, 等. 基于Shannon复数小波和时间反转聚焦的复合材料结构多源冲击成像定位方法[J]. 航空学报201031(12): 2417-2424.
  QIU L, YUAN S F, SU Y Z, et al. Multiple impact source imaging and localization on composite structure based on Shannon complex wavelet and time reversal focusing[J]. Acta Aeronautica et Astronautica Sinica201031(12): 2417-2424 (in Chinese).
56 LIANG D, YUAN S F, LIU M L. Distributed coordination algorithm for impact location of preciseness and real-time on composite structures[J]. Measurement201346(1): 527-536.
57 MIGOT A, GIURGIUTIU V. Impact localization using sparse PWAS networks and wavelet transform[C]∥Structural Health Monitoring 2017. Lancaster: DEStech Publications, Inc., 2017: 391-398.
58 YAN S, LI B W. Impact localization of thin plate structures using pzt-array based passive wave method[J]. IOP Conference Series: Earth and Environmental Science2019283(1): 012040.
59 GORGIN R, WANG Z P, WU Z J, et al. Probability based impact localization in plate structures using an error index[J]. Mechanical Systems and Signal Processing2021157: 107724.
60 CIAMPA F, MEO M. Acoustic emission source localization and velocity determination of the fundamental mode A0 using wavelet analysis and a Newton-based optimization technique[J]. Smart Materials and Structures201019(4): 045027.
61 WARD J, CROXFORD A, PAGET C. Passive impact localisation for the structural health monitoring of new airframe materials[J]. Journal of Physics: Conference Series2013457: 012010.
62 LIU M Z, YANG J X, CAO Y P, et al. A new method for arrival time determination of impact signal based on HHT and AIC[J]. Mechanical Systems and Signal Processing201786: 177-187.
63 DAS A K, LEUNG C K. A new power-based method to determine the first arrival information of an acoustic emission wave[J]. Structural Health Monitoring201918(5-6): 1620-1632.
64 CHEN C, LI Y, YUAN F G. Impact and damage location detection on plate-like structures using time-Reversal method[C]∥the 8th International Workshop on Structural Health Monitoring. Quebec: Stanford, 20118: 274-281.
65 PARK B, SOHN H, OLSON S E, et al. Impact localization in complex structures using laser-based time reversal[J]. Structural Health Monitoring201211(5): 577-588.
66 CIAMPA F, BOCCARDI S, MEO M. Factors affecting the imaging of the impact location with inverse filtering and diffuse wave fields[J]. Journal of Intelligent Material Systems and Structures201627(11): 1523-1533.
67 DE SIMONE M E, CIAMPA F, MEO M. A hierarchical method for the impact force reconstruction in composite structures[J]. Smart Materials and Structures201928(8): 085022.
68 YU Z X, XU C, SUN J Y, et al. Impact localization and force reconstruction for composite plates based on virtual time reversal processing with time-domain spectral finite element method?[J]. Structural Health Monitoring202322(6): 4149-4170.
69 QIU L, YUAN S F, ZHANG X Y, et al. A time reversal focusing based impact imaging method and its evaluation on complex composite structures[J]. Smart Materials and Structures201120(10): 105014.
70 武湛君, 曾旭, 邓德双, 等. 基于自适应时间反转聚焦的加筋复材板冲击定位[J]. 复合材料学报202441(1): 507-520.
  WU Z J, ZENG X, DENG D S, et al. Impact localization on stiffened composite plate based on adaptive time reversal focusing[J]. Acta Materiae Compositae Sinica202441(1): 507-520 (in Chinese).
71 FRIEDEN J, CUGNONI J, BOTSIS J, et al. Low energy impact damage monitoring of composites using dynamic strain signals from FBG sensors-Part I: Impact detection and localization[J]. Composite Structures201294(2): 438-445.
72 JANG B W, LEE Y G, KIM C G, et al. Impact source localization for composite structures under external dynamic loading condition[J]. Advanced Composite Materials201524(4): 359-374.
73 KIM J H, KIM Y Y, PARK Y, et al. Low-velocity impact localization in a stiffened composite panel using a normalized cross-correlation method[J]. Smart Materials and Structures201524(4): 045036.
74 SHRESTHA P, KIM J H, PARK Y, et al. Impact localization on composite structure using FBG sensors and novel impact localization technique based on error outliers[J]. Composite Structures2016142: 263-271.
75 SHRESTHA P, PARK Y, KIM C G. Low velocity impact localization on composite wing structure using error outlier based algorithm and FBG sensors[J]. Composites Part B: Engineering2017116: 298-312.
76 JANG B W, KIM C G. Impact localization on a composite stiffened panel using reference signals with efficient training process[J]. Composites Part B: Engineering201694: 271-285.
77 KWON H, PARK Y, SHIN C, et al. Embedded silicon carbide fiber sensor network based low-velocity impact localization of composite structures[J]. Smart Materials and Structures202029(5): 055030.
78 JANG B W. Practical method for localizing low-velocity impact on a UAV composite wingbox structure under loading conditions[J]. Advanced Composite Materials202433(2): 290-304.
79 ARENA M, VISCARDI M. Vibration parameters for impact detection of composite panel: A neural network based approach[J]. Journal of Composites Science20215(7): 185.
80 FU T, ZHANG Z C, LIU Y J, et al. Development of an artificial neural network for source localization using a fiber optic acoustic emission sensor array[J]. Structural Health Monitoring201514(2): 168-177.
81 FU T, WEI P, LIU D Y, et al. 3-D source location by neural network for FBG acoustic emission sensors[J]. IEEE Sensors Journal202121(24): 27473-27481.
82 CAPRINO G, LOPRESTO V, LEONE C, et al. Acoustic emission source location in unidirectional carbon-fiber-reinforced plastic plates with virtually trained artificial neural networks[J]. Journal of Applied Polymer Science2011122(6): 3506-3513.
83 SAREGO G, ZACCARIOTTO M, GALVANETTO U. Artificial neural networks for impact force reconstruction on composite plates and relevant uncertainty propagation[J]. IEEE Aerospace and Electronic Systems Magazine201833(8): 38-47.
84 GHAJARI M, SHARIF-KHODAEI Z, ALIABADI F M H. Impact detection using artificial neural networks[J]. Key Engineering Materials2011488-489: 767-770.
85 SUNG D U, OH J H, KIM C G, et al. Impact monitoring of smart composite laminates using neural network and wavelet analysis[J]. Journal of Intelligent Material Systems and Structures200011(3): 180-190.
86 SENO A H, ALIABADI F M H. A comparative study of impact localisation in composite structures using neural networks under environmental and operational variations[J]. Key Engineering Materials2019827: 410-415.
87 LECLERC J R, WORDEN K, STASZEWSKI W J, et al. Impact detection in an aircraft composite panel—a neural-network approach[J]. Journal of Sound and Vibration2007299(3): 672-682.
88 WORDEN K, STASZEWSKI W J. Impact location and quantification on a composite panel using neural networks and a genetic algorithm[J]. Strain200036(2): 61-68.
89 MASERAS-GUTIERREZ M A, STASZEWSKI W J, FOUND M S, et al. Detection of impacts in composite materials using piezoceramic sensors and neural networks[J]. Smart Structures3329: 491-497.
90 JANG B W, KIM C G. Impact localization of composite stiffened panel with triangulation method using normalized magnitudes of fiber optic sensor signals[J]. Composite Structures2019211: 522-529.
91 XU Q S. A comparison study of extreme learning machine and least squares support vector machine for structural impact localization[J]. Mathematical Problems in Engineering20142014(1): 906732.
92 SAI Y Z, ZHAO X X, WANG L L, et al. Impact localization of CFRP structure based on FBG sensor network[J]. Photonic Sensors202010(1): 88-96.
93 JIANG M S, LU S Z, SUI Q M, et al. Low velocity impact localization on CFRP based on FBG sensors and ELM algorithm[J]. IEEE Sensors Journal201515(8): 4451-4456.
94 JIANG M S, LI X Y, WANG S C, et al. Impact localization system by using FBG sensors and extreme learning machine algorithm[J]. Applied Mechanics and Materials2015740: 664-667.
95 LIU Q, WANG F D, LI J D, et al. A hybrid support vector regression with multi-domain features for low-velocity impact localization on composite plate structure[J]. Mechanical Systems and Signal Processing2021154: 107547.
96 YUE N, SHARIF KHODAEI Z, FERRI ALIABADI M H. Passive sensing of sensorized composite panels: Support vector machine[J]. Key Engineering Materials2016713: 199-202.
97 KIM K R, LEE Y S. Acoustic emission source localization in plate-like structures using least-squares support vector machines with delta t feature[J]. Journal of Mechanical Science and Technology201428(8): 3013-3020.
98 HESSER D F, KOCUR G K, MARKERT B. Active source localization in wave guides based on machine learning[J]. Ultrasonics2020106: 106144.
99 PANG Z, YUAN M, SONG H, et al. Impact localization method for composite plate based on low sampling rate embedded fiber Bragg grating sensors[J]. Mathematical Problems in Engineering20172017(1): 7083295.
100 WANG F D, KANG Y T, XIAO W S, et al. A novel low-velocity impact region identification method for cantilever beams using a support vector machine[J]. Mathematical Problems in Engineering20222022: 2906535.
101 HESSER D F, MOSTAFAVI S, KOCUR G K, et al. Identification of acoustic emission sources for structural health monitoring applications based on convolutional neural networks and deep transfer learning[J]. Neurocomputing2021453: 1-12.
102 JONES R T, SIRKIS J S, FRIEBELE E J. Detection of impact location and magnitude for isotropic plates using neural networks[J]. Journal of Intelligent Material Systems and Structures19978(1): 90-99.
103 PARK S O, JANG B W, LEE Y G, et al. Detection of impact location for composite stiffened panel using FBG sensors[J]. Advanced Materials Research2010123-125: 895-898.
104 FENG B, RIBEIRO A L, PASADAS D J, et al. Locating low velocity impacts on a composite plate using multi-frequency image fusion and artificial neural network[J]. Journal of Nondestructive Evaluation202241(2): 34.
105 FU H M, VONG C M, WONG P K, et al. Fast detection of impact location using kernel extreme learning machine[J]. Neural Computing and Applications201627(1): 121-130.
106 TABIAN I, FU H, SHARIF KHODAEI Z. Impact detection on composite plates based on convolution neural network[J]. Key Engineering Materials2019827: 476-481.
107 FENG B, CHENG S, DENG K X, et al. Localization of low-velocity impact in CFRP plate using time-frequency features of guided wave and convolutional neural network[J]. Wave Motion2023119: 103127.
108 LI S J, PENG G L, JI M Y, et al. Impact identification of composite cylinder based on improved deep metric learning model and weighted fusion Tikhonov regularized total least squares[J]. Composite Structures2022283: 115144.
109 SENO A H, SHARIF KHODAEI Z, FERRI ALIABADI M H. Passive sensing method for impact localisation in composite plates under simulated environmental and operational conditions[J]. Mechanical Systems and Signal Processing2019129: 20-36.
110 ZHAO B W, WANG Y H, ZENG X P, et al. Impact monitoring on complex structure using VMD-MPE feature extraction and transfer learning[J]. Ultrasonics2024136: 107141.
111 ZHAO B W, ZHANG Y L, LIU Q J, et al. Impact monitoring of large size complex metal structures based on sparse sensor array and transfer learning[J]. Ultrasonics2024140: 107305.
112 赵志伟. 噪声目标被动定位方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2008: 24-25.
  ZHAO Z W. Research on passive location method of noise target[D].Harbin: Harbin Engineering University, 2008: 24-25 (in Chinese).
113 WAITE A D. Sonar for practising engineers[M]. New Jersey : John Wiley & Sons Inc, 1996: 255-257.
114 WU R, MA Y, JAMES R D. Array pattern synthesis and robust beamforming for a complex sonar system[J]. IEE Proceedings-Radar, Sonar and Navigation1997144(6): 370.
115 KIM S M, KIM S M. Wireless visible light communication technology using optical beamforming[J]. Optical Engineering201352(10): 106101.
116 LEE M S. Wideband capon beamforming for a planar phased radar array with antenna switching[J]. ETRI Journal200931(3): 321-323.
117 WAGNER G S, OWENS T J. Signal detection using multi-channel seismic data[J]. Bulletin of the Seismological Society of America199686(1A): 221-231.
118 HAN J H, KIM Y J. Time-frequency beamforming for nondestructive evaluations of plate using ultrasonic Lamb wave[J]. Mechanical Systems and Signal Processing201554-55: 336-356.
119 YOO B, PUREKAR A S, ZHANG Y, et al. Piezoelectric-paint-based two-dimensional phased sensor arrays for structural health monitoring of thin panels[J]. Smart Materials and Structures201019(7): 075017.
120 ZHONG Y T, XIANG J W. Impact location on a stiffened composite panel using improved linear array[J]. Smart Structures and Systems201924: 173-182.
121 YANG J, GAN W S, TAN K S, et al. Acoustic beamforming of a parametric speaker comprising ultrasonic transducers[J]. Sensors and Actuators A: Physical2005125(1): 91-99.
122 JOHNSON D H, DUDGEON D E. Array signal processing: Concepts and techniques[M]. Simon & Schuster1992.
123 HE T, PAN Q, LIU Y G, et al. Near-field beamforming analysis for acoustic emission source localization[J]. Ultrasonics201252(5): 587-592.
124 MCLASKEY G C, GLASER S D, GROSSE C U. Beamforming array techniques for acoustic emission monitoring of large concrete structures[J]. Journal of Sound Vibration2010329(12): 2384-2394.
125 NAKATANI H, HAJZARGARBASHI T, ITO K, et al. Impact localization on a cylindrical plate by near-field beamforming analysis[C]∥SPIE Proceedings Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2012. SPIE, 2012: 8345.
126 SAI Y Z, JIANG M S, SUI Q M, et al. Low velocity impact localization system using FBG array and MVDR beamforming algorithm[J]. Photonic Sensors20155(4): 357-364.
127 KUNDU T, NAKATANI H, TAKEDA N. Acoustic source localization in anisotropic plates[J]. Ultrasonics201252(6): 740-746.
128 YIN S X, CUI Z W, KUNDU T. Acoustic source localization in anisotropic plates with “Z” shaped sensor clusters[J]. Ultrasonics201884: 34-37.
129 GAO Q, JEON J Y, PARK G, et al. A novel T-shaped sensor cluster for acoustic source localization[J]. Structural Health Monitoring202221(2): 451-464.
130 GAO Q, JEON J Y, XIANG J W, et al. Impact localization using nonequidistant T-shaped sensor clusters[J]. IEEE Sensors Journal202323(3): 2970-2977.
131 SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation198634(3): 276-280.
132 赵汉青, 文必洋, 吴敏. MUSIC算法在相干探海雷达中的应用[J]. 武汉大学学报(理学版)200147(5): 649-652.
  ZHAO H Q, WEN B Y, WU M. Application of MUSIC algorithm in coherent radar detecting sea surface targets[J]. Journal of Wuhan University (Natural Science Edition)200147(5): 649-652 (in Chinese).
133 景杨, 王立婷, 胡银丰. 基于矩阵空域滤波的窄带MUSIC算法研究与应用[J]. 声学与电子工程2018(2): 13-15, 26.
  JING Y, WANG L T, HU Y F. Research and application of narrow band MUSIC algorithm based on matrix spatial filtering[J]. Acoustics and Electronics Engineering2018(2): 13-15, 26 (in Chinese).
134 姜彦宇, 罗宇. MUSIC算法在国产多波束测深仪中的应用研究[J]. 海洋测绘201737(1): 43-46.
  JIANG Y Y, LUO Y. Application of MUSIC algorithm in domestic multibeam echo sounder[J]. Hydrographic Surveying and Charting201737(1): 43-46 (in Chinese).
135 楼大年, 张宁, 夏猛. MUSIC算法在反射面多波束天线测向中的应用与改进[J]. 空间电子技术201310(2): 50-54.
  LOU D N, ZHANG N, XIA M. Direction-finding via multiple-beam antennas with array-feed reflectors using the MUSIC algorithm and its improvement[J]. Space Electronic Technology201310(2): 50-54 (in Chinese).
136 蒋建彬, 周傲松. 星上高分辨率测向技术研究[J]. 航天器工程200514(4): 1-5.
  JIANG J B, ZHOU A S. Research on high resolution direction finding technology on satellite[J]. Spacecraft engineering200514(4): 1-5 (in Chinese).
137 段崇棣. MUSIC算法在通信卫星干扰源定位中的应用[J]. 空间电子技术20052(1): 37-41.
  DUAN C D. Application of MUSIC algorithm in interference source location of communication satellites[J]. Space Electronic Technology20052(1): 37-41 (in Chinese).
138 苏永振, 袁慎芳, 王瑜. 基于多重信号分类算法的复合材料冲击定位[J]. 复合材料学报201027(3): 105-110.
  SU Y Z, YUAN S F, WANG Y. Impact localization in composite using multiple signal classification method[J]. Acta Materiae Compositae Sinica201027(3): 105-110 (in Chinese).
139 YUAN S F, ZHONG Y T, QIU L, et al. Two-dimensional near-field multiple signal classification algorithm–based impact localization[J]. Journal of Intelligent Material Systems and Structures201526(4): 400-413.
140 ZHONG Y T, YUAN S F, QIU L. Multi-impact source localisation on aircraft composite structure using uniform linear PZT sensors array[J]. Structure and Infrastructure Engineering201511(3): 310-320.
141 YUAN S F, BAO Q, QIU L, et al. A single frequency component-based re-estimated MUSIC algorithm for impact localization on complex composite structures[J]. Smart Material Structures201524(10): 105021.
142 ZHANG Z H, ZHONG Y T, XIANG J W. TAM and MUSIC approach for impact-source localization under deformation conditions[J]. Sensors202020(11): 3151.
143 钟永腾, 袁慎芳, 邱雷. 基于梅花阵列的复合材料全方位冲击定位方法[J]. 复合材料学报201431(5): 1369-1374.
  ZHONG Y T, YUAN S F, QIU L. Omni-directional impact localization method on composite structure using plum blossom array[J]. Acta Materiae Compositae Sinica201431(5): 1369-1374 (in Chinese).
144 ZHONG Y T, XIANG J W. A two-dimensional plum-blossom sensor array-based multiple signal classification method for impact localization in composite structures[J]. Computer-Aided Civil and Infrastructure Engineering201631(8): 633-643.
145 REN Y Q, QIU L, YUAN S F, et al. A diagnostic imaging approach for online characterization of multi-impact in aircraft composite structures based on a scanning spatial-wavenumber filter of guided wave[J]. Mechanical Systems and Signal Processing201790: 44-63.
146 刘建, 裘进浩, 常伟杰. 运用矩形压电片的冲击载荷定位新方法[J]. 振动、测试与诊断201030(3): 257-259.
  LIU J, QIU J H, CHANG W J. Location of impact load using rectangular piezoelectric sensors[J]. Journal of Vibration, Measurement & Diagnosis, 201030(3): 257-259 (in Chinese).
147 MATT H M, DI SCALEA F L. Macro-fiber composite piezoelectric rosettes for acoustic source location in complex structures[J]. Smart Material Structures200716(4): 1489-1499.
148 蒋帅, 沈意平, 王送来, 等. 基于压电纤维传感器应力波方向检测的结构冲击定位研究[J]. 仪器仪表学报44(1): 27-37.
  JIANG S, SHEN Y P, WANG S L, et al. Research on structural impact source location based on sensing of stress wave direction by the piezoelectric fiber sensor [J]. Chinese Journal of Scientific Instrument202344(1): 27-37 (in Chinese).
149 GOUTAUDIER D, OSMOND G, GENDRE D. Impact localization on a composite fuselage with a sparse network of accelerometers[J]. Comptes Rendus Mécanique2020348(3): 191-209.
150 GOUTAUDIER D, GENDRE D, KEHR-CANDILLE V, et al. Single-sensor approach for impact localization and force reconstruction by using discriminating vibration modes[J]. Mechanical Systems and Signal Processing2020138: 106534.
151 GAUL L, HURLEBAUS S. Determination of the impact force on a plate by piezoelectric film sensors[J]. Archive of Applied Mechanics199969(9): 691-701.
152 WU E, TSAI T D, YEN C S. Two methods for determining impact-force history on elastic plates[J]. Experimental Mechanics199535(1): 11-18.
153 HU N, FUKUNAGA H, MATSUMOTO S, et al. An efficient approach for identifying impact force using embedded piezoelectric sensors[J]. International Journal of Impact Engineering200734(7): 1258-1271.
154 HU N, MATSUMOTO S, NISHI R, et al. Identification of impact forces on composite structures using an inverse approach[J]. Structural Engineering and Mechanics200727(4): 409-424.
155 WU E, YEH J C, YEN C S. Impact on composite laminated plates: An inverse method[J]. International Journal of Impact Engineering199415(4): 417-433.
156 WU E, YEH J C, YEN C S. Identification of impact forces at multiple locations on laminated plates[J]. AIAA Journal199432(12): 2433-2439.
157 PARK J, HA S, CHANG F K. Monitoring impact events using a system-identification method[J]. AIAA Journal200947(9): 2011-2021.
158 SI L, BAIER H. An ensemble impact monitoring and identification technique for fiber composite structures under multiple disturbances[J]. Structural Health Monitoring201615(3): 247-265.
159 YAN G. A Bayesian approach for impact load identification of stiffened composite panel[J]. Inverse Problems in Science and Engineering201422(6): 940-965.
160 JACQUELIN E, BENNANI A, HAMELIN P. Force reconstruction: Analysis and regularization of a deconvolution problem[J]. Journal of Sound and Vibration2003265(1): 81-107.
161 QIAO B J, ZHANG X W, GAO J W, et al. Sparse deconvolution for the large-scale ill-posed inverse problem of impact force reconstruction[J]. Mechanical Systems and Signal Processing201783: 93-115.
162 REZAYAT A, NASSIRI V, DE PAUW B, et al. Identification of dynamic forces using group-sparsity in frequency domain[J]. Mechanical Systems and Signal Processing201670-71: 756-768.
163 ZHOU R, WANG Y N, QIAO B J, et al. Impact force identification on composite panels using fully overlapping group sparsity based on Lp -norm regularization[J]. Structural Health Monitoring202423(1): 137-161.
164 YAN G, SUN H. A non-negative Bayesian learning method for impact force reconstruction[J]. Journal of Sound and Vibration2019457: 354-367.
165 FENG W, LI Q F, LU Q H, et al. Element-wise Bayesian regularization for fast and adaptive force reconstruction[J]. Journal of Sound and Vibration2021490: 115713.
166 ARREDONDO M T, FRITZEN C. Impact monitoring in smart structures based on Gaussian processes[C]∥Proceedings of the 4th International Symposium on NDT in Aerospace. Berlin: NDT. net, 2012: 13-15.
167 MERUANE V, ESPINOZA C, LóPEZ DROGUETT E, et al. Impact identification using nonlinear dimensionality reduction and supervised learning[J]. Smart Materials and Structures201928(11): 115005.
168 GHAJARI M, SHARIF-KHODAEI Z, ALIABADI M H, et al. Identification of impact force for smart composite stiffened panels[J]. Smart Materials and Structures201322(8): 085014.
169 ZHOU J, DONG L L, GUAN W, et al. Impact load identification of nonlinear structures using deep recurrent neural network[J]. Mechanical Systems and Signal Processing2019133: 106292.
170 ZARGAR S A, YUAN F G. Impact diagnosis in stiffened structural panels using a deep learning approach[J]. Structural Health Monitoring202120(2): 681-691.
171 CHEN T, GUO L, DUAN A, et al. A feature learning-based method for impact load reconstruction and localization of the plate-rib assembled structure[J]. Structural Health Monitoring202221(4): 1590-1607.
172 WU Z J, XU L T, WANG Y S, et al. Impact energy identification on a composite plate using basis vectors[J]. Smart Materials and Structures201524(9): 095007.
173 ZHONG Y T, XIANG J W, GAO H F, et al. Impact energy level assessment of composite structures using MUSIC-ANN approach[J]. Structural Control and Health Monitoring201623(5): 825-837.
174 DATTA A, AUGUSTIN M J, GUPTA N, et al. Impact localization and severity estimation on composite structure using fiber Bragg grating sensors by least square support vector regression[J]. IEEE Sensors Journal201919(12): 4463-4470.
175 DAMM A M, SPITZMULLER C, RAICHLE A T S, et al. Deep learning for impact detection in composite plates with sparsely integrated sensors[J]. Smart Material Structures202029(12): 125014.
176 LU S Z, DONG H J, ZHANG R F, et al. Low energy impact damage identification method of CFRP structure based on wavelet transform and probabilistic neural network[J]. Optik2021232: 166490.
177 LU G, LIANG D K, XU Y M. The energy class discrimination of low velocity impacts on composite material structure by Bragg grating sensor technique[J]. Composites Part B: Engineering201243(2): 594-598.
178 LU G, ZHU T Y, XU Y M. Low velocity impact energy monitoring and recognition of composite laminates with variable thickness based on optical fiber sensor network[J]. Applied Sciences202111(2): 584.
文章导航

/