合成双射流控制水滴轨迹特性实验
收稿日期: 2024-06-18
修回日期: 2024-07-08
录用日期: 2024-07-19
网络出版日期: 2024-07-24
基金资助
国家自然科学基金(92271110);国家科技重大专项(J2019-Ⅲ-0010-0054, J2019-Ⅱ-0016-0037);湖南省自然科学基金(2023JJ30622);沈阳市飞机结冰与防除冰重点实验室基金(YL2022XFX03);中国空气动力研究与发展中心结冰与防除冰重点实验室开放课题(IADL20220410)
Trajectory characteristics experiment of single micro water droplet controlled by dual synthetic jet actuator
Received date: 2024-06-18
Revised date: 2024-07-08
Accepted date: 2024-07-19
Online published: 2024-07-24
Supported by
National Natural Science Foundation of China(92271110);National Science and Technology Major Project (J2019-Ⅲ-0010-0054, J2019-Ⅱ-0016-0037);Natural Science Foundation of Hunan Province(2023JJ30622);Shenyang Key Laboratory of Aircraft Icing and Ice Protection Foundation(YL2022XFX03);Foundation of Key Laboratory of Icing and Anti/De-icing of CARDC(IADL20220410)
为进一步发展合成双射流防除冰技术,搭建了合成双射流控制水滴轨迹特性实验台,通过高速摄影研究了合成双射流激励器相对水滴静止以及存在相对运动时激励器驱动电压、驱动信号相位对水滴轨迹的影响。以水滴受到射流影响375 μs后的水平速度作指标,评估射流对水滴轨迹特性的影响。激励器与水滴不存在相对运动(转盘静止)时,速度从驱动信号幅值为60 V时的0.65 m/s增大至165 V时的2.29 m/s,增长趋势呈线性。水滴产生时射流所处相位对水滴的轨迹影响较大。保持165 V的驱动信号幅值,不同射流初始相位下的速度可从1.11 m/s变化至4.98 m/s。当合成双射流激励器以4.4 m/s的线速度接近水滴时(通过转盘转动实现),速度从驱动信号幅值为60 V时的1.57 m/s增大至驱动幅值为165 V时的3.25 m/s;并且圆盘本身的转动对速度的影响很小。此外,圆盘转动时速度随射流初始相位的变化相比转盘静止时有一个时间差,但总体变化趋势相近,并且转盘转动时对应的速度更大。实验中射流均能够使得水滴的速度在极短时间内提升至与水滴产生区域射流速度相近的量级。转盘以更高速度转动时(实验中激励器与水滴最大相对线速度可达22.0 m/s),合成双射流仍对水滴轨迹有明显影响。
高天翔 , 罗振兵 , 周岩 , 彭文强 , 程盼 . 合成双射流控制水滴轨迹特性实验[J]. 航空学报, 2025 , 46(4) : 130833 -130833 . DOI: 10.7527/S1000-6893.2024.30833
To further advance the development of Dual Synthetic Jet (DSJ) based anti-icing/de-icing technology, we established an experimental setup to control the trajectory characteristics of droplets using DSJ. The effects of the actuator driving voltage and driving signal phase on the droplet trajectory were studied using high-speed photography under the conditions of the actuator being stationary relative to the droplet and existence of relative motion. The horizontal velocity of the droplet 375 μs after being affected by the jet was used as an index to assess the impact of the jet on the trajectory characteristics of the droplet. When no relative motion existed between the actuator and the droplet (the turntable being stationary), the speed increased linearly from 0.65 m/s at a driving signal amplitude of 60 V to 2.29 m/s at 165 V. The phase of the jet at the time of droplet generation had a significant impact on the trajectory of the droplet. With a driving signal amplitude of 165 V, the speed varied from 1.11 m/s to 4.98 m/s at different initial phases of the jet. When the actuator approached the droplet at a linear speed of 4.4 m/s (achieved by rotating the turntable), the speed increased from 1.57 m/s at a driving signal amplitude of 60 V to 3.25 m/s at 165 V. Moreover, the rotation of the turntable itself had little effect on the speed. Additionally, when the turntable was rotating, the change in the speed with the initial phase of the jet had a time lag compared to when the turntable was stationary, but the overall trend was similar, and the corresponding the speed was larger when the turntable was rotating. The results indicate that the jet could rapidly increase the velocity of the droplet to a level close to that of the jet in the area where the droplet was generated. Even when the turntable rotated at higher speeds (with a maximum relative linear velocity of 22.0 m/s between the actuator and the droplet in the experiment), the dual synthetic jet still significantly affected the trajectory of the droplet.
1 | 裘燮纲, 韩凤华. 飞机防冰系统[M]. 北京: 国防工业出版社, 1985: 44-58. |
QIU X G, HAN F H. Aircraft anti-icing system[M]. Beijing: National Defense Industry Press, 1985: 44-58 (in Chinese). | |
2 | 杜雁霞, 李明, 桂业伟, 等. 飞机结冰热力学行为研究综述[J]. 航空学报, 2017, 38(2): 520706. |
DU Y X, LI M, GUI Y W, et al. Review of thermodynamic behaviors in aircraft icing process[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520706 (in Chinese). | |
3 | CAO Y H, TAN W Y, WU Z L. Aircraft icing: An ongoing threat to aviation safety[J]. Aerospace Science and Technology, 2018, 75: 353-385. |
4 | POTAPCZUK M G, BERKOWITZ B M. An experimental investigation of multielement airfoil ace accretion and resulting performance degradation[J]. Journal of Aircraft, 1990, 27(8): 679-691. |
5 | CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003, 35: 11-21. |
6 | 桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报, 2017, 38(2): 520734. |
GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520734 (in Chinese). | |
7 | RAMAKRISHNA D M, VIRARAGHAVAN T. Environmental impact of chemical deicers—A review[J]. Water, Air, and Soil Pollution, 2005, 166(1): 49-63. |
8 | THOMAS S K, CASSONI R P, MACARTHUR C D. Aircraft anti-icing and de-icing techniques and modeling[J]. Journal of Aircraft, 1996, 33(5): 841-854. |
9 | 朱春玲, 朱程香. 飞机结冰及其防护[M]. 北京: 科学出版社, 2016: 101-102. |
ZHU C L, ZHU C X. Aircraft icing and its protection[M]. Beijing: Science Press, 2016: 101-102 (in Chinese). | |
10 | 张攀峰, 王晋军, 冯立好. 零质量射流技术及其应用研究进展[J]. 中国科学E辑, 2008, 38(3): 321-349. |
ZHANG P F, WANG J J, FENG L H. Research progress of zero mass jet technology and its application[J]. Scientia Sinica (Technologica), 2008, 38(3): 321-349 (in Chinese). | |
11 | 王小伟, 张智慧, 王娴. 结冰环境热合成双射流激励器工作特性数值研究[J]. 气体物理, 2022, 7(2): 65-74. |
WANG X W, ZHANG Z H, WANG X. Numerical investigation on the working characteristics of dual synthetic hot jet actuator in icing environment[J]. Physics of Gases, 2022, 7(2): 65-74 (in Chinese). | |
12 | SMITH B L, GLEZER A. The formation and evolution of synthetic jets[J]. Physics of Fluids, 1998, 10(9): 2281-2297. |
13 | 罗振兵, 夏智勋, 邓雄, 等. 合成双射流及其流动控制技术研究进展[J]. 空气动力学学报, 2017, 35(2): 252-264. |
LUO Z B, XIA Z X, DENG X, et al. Research progress of dual synthetic jets and its flow control technology[J]. Acta Aerodynamica Sinica, 2017, 35(2): 252-264 (in Chinese). | |
14 | NAGAPPAN N, GOLUBEV V, NAKHLA H. On icing control using thermally activated synthetic jets[C]∥Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013. |
15 | 蒋浩, 夏智勋, 罗振兵, 等. 合成双射流控制机翼水滴撞击特性[J]. 气体物理, 2017, 2(6): 39-47. |
JIANG H, XIA Z X, LUO Z B, et al. Droplet impingement characteristics with dual synthetic jet control[J]. Physics of Gases, 2017, 2(6): 39-47 (in Chinese). | |
16 | YANG S K, YI X, GUO Q L, et al. Novel hybrid ice protection system combining thermoelectric system and synthetic jet actuator[J]. AIAA Journal, 2021, 59(4): 1496-1500. |
17 | JIN Z Y, WANG Y M, YANG Z G. An experimental investigation into the effect of synthetic jet on the icing process of a water droplet on a cold surface[J]. International Journal of Heat and Mass Transfer, 2014, 72: 553-558. |
18 | GAUTHIER A, BIRD J C, CLANET C, et al. Aerodynamic Leidenfrost effect[J]. Physical Review Fluids, 2016, 1(8): 084002. |
19 | VERAS-ALBA B, PALACIOS J, VARGAS M . et al .Experimental investigation of supercooled water droplet breakup near leading edge of airfoil[J]. Journal of Aircraft, 2018, 55(5): 1970-1984. |
/
〈 |
|
〉 |