电子电气工程与控制

攻击角度和时间精确控制的制导律设计

  • 董伟 ,
  • 易鑫 ,
  • 张后军 ,
  • 王春彦 ,
  • 邓方
展开
  • 1.北京理工大学 自主智能无人系统全国重点实验室,北京 100081
    2.北京理工大学 宇航学院,北京 100081
    3.北京机电工程研究所,北京 100083
    4.北京理工大学 前沿技术研究院,济南 250300
    5.北京理工大学 重庆创新中心,重庆 401120

收稿日期: 2024-06-04

  修回日期: 2024-06-24

  录用日期: 2024-07-19

  网络出版日期: 2024-07-23

基金资助

国家杰出青年科学基金(62025301);国家自然科学基金(62373055);博士后创新人才支持计划(BX20230461);中国博士后科学基金面上资助(2023M740249)

Design of guidance law with precise impact angle and time control

  • Wei DONG ,
  • Xin YI ,
  • Houjun ZHANG ,
  • Chunyan WANG ,
  • Fang DENG
Expand
  • 1.National Key Lab of Autonomous Intelligent Unmanned Systems,Beijing Institute of Technology,Beijing 100081,China
    2.School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
    3.Beijing System Design Institute of Electro-Mechanic Engineering,Beijing 100083,China
    4.Advanced Technology Research Institute,Beijing Institute of Technology,Jinan 250300,China
    5.Chongqing Innovation Center,Beijing Institute of Technology,Chongqing 401120,China

Received date: 2024-06-04

  Revised date: 2024-06-24

  Accepted date: 2024-07-19

  Online published: 2024-07-23

Supported by

National Science Fund for Distinguished Young Scholars(62025301);National Natural Science Foundation of China(62373055);Postdoctoral Innovative Talents Support Program(BX20230461);China Postdoctoral Science Foundation(2023M740249)

摘要

时空约束制导是指同时满足攻击角度和攻击时间约束的制导方式。针对导弹末制导问题,设计了一种具有精确控制能力的时空约束制导律。首先,基于最优落角约束制导律的剩余飞行时间估计式,在不依赖于小角度假设的情况下,逆向推导了剩余飞行时间可以精确预测的变增益落角约束制导律。其次,在该制导律的基础上增加攻击时间误差反馈项,设计得到了不存在指令奇异现象的时空约束制导律,实现了攻击角度和时间的同时精确控制。接着,引入剩余弹道长度作为自变量,将所提出的时空约束制导律拓展到了导弹速度大小变化的实际场景。最后,通过多组数值仿真算例,验证了所提制导律的有效性和优势。

本文引用格式

董伟 , 易鑫 , 张后军 , 王春彦 , 邓方 . 攻击角度和时间精确控制的制导律设计[J]. 航空学报, 2025 , 46(4) : 330787 -330787 . DOI: 10.7527/S1000-6893.2024.30787

Abstract

Spatial-temporal constrained guidance is a method that simultaneously meets impact angle and time constraints. To address the problem of missile terminal guidance, a spatial-temporal constrained guidance law with precise control capability is designed in this paper. First, based on the time-to-go estimation of the optimal impact angle constrained guidance law, a varying-gain impact angle constrained guidance law whose time-to-go can be precisely predicted is inversely derived without any small angle approximation. Second, an impact-time error feedback term is added to the above guidance law to obtain the singularity-free spatial-temporal guidance law for simultaneous precise control of impact angle and time. Third, by introducing the remaining trajectory length as an independent variable, the proposed spatial-temporal guidance law is extended to practical scenarios with missile speed variation. Finally, the effectiveness and advantages of the proposed guidance law are verified through several numerical simulations.

参考文献

1 RATNOO A, GHOSE D. Impact angle constrained interception of stationary targets[J]. Journal of Guidance, Control, and Dynamics200831(6): 1817-1822.
2 SEO M G, LEE C H, TAHK M J. New design methodology for impact angle control guidance for various missile and target motions[J]. IEEE Transactions on Control Systems Technology201826(6): 2190-2197.
3 黎克波, 廖选平, 梁彦刚, 等. 基于纯比例导引的拦截碰撞角约束制导策略[J]. 航空学报202041(S2): 724277.
  LI K B, LIAO X P, LIANG Y G, et al. Guidance strategy with impact angle constraint based on pure proportional navigation[J]. Acta Aeronautica et Astronautica Sinica202041(S2): 724277 (in Chinese).
4 KIM J, CHO N, KIM Y. Field-of-view-constrained impact angle control guidance with error convergence before interception considering speed changes[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2021235(2): 238-256.
5 刘子超, 王江, 何绍溟, 等. 基于预测校正的落角约束计算制导方法[J]. 航空学报202243(8): 325443.
  LIU Z C, WANG J, HE S M, et al. A computational guidance algorithm for impact angle control based on predictor-corrector concept[J]. Acta Aeronautica et Astronautica Sinica202243(8): 325443 (in Chinese).
6 HE S M, LEE C H. Optimality of error dynamics in missile guidance problems[J]. Journal of Guidance, Control, and Dynamics201841(7): 1624-1633.
7 李晨迪, 王江, 李斌, 等. 过虚拟交班点的能量最优制导律[J]. 航空学报201940(12): 323249.
  LI C D, WANG J, LI B, et al. Energy-optimal guidance law with virtual hand-over point[J]. Acta Aeronautica et Astronautica Sinica201940(12): 323249 (in Chinese).
8 JI H B, LIU X D, SONG Z Y, et al. Time-varying sliding mode guidance scheme for maneuvering target interception with impact angle constraint[J]. Journal of the Franklin Institute2018355(18): 9192-9208.
9 盛永智, 甘佳豪, 张成新. 弹道可调的落角约束分数阶滑模制导律设计[J]. 航空学报202344(7): 327073.
  SHENG Y Z, GAN J H, ZHANG C X. Fractional order sliding mode guidance law design with trajectory adjustable and terminal angular constraint[J]. Acta Aeronautica et Astronautica Sinica202344(7): 327073 (in Chinese).
10 JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology200614(2): 260-266.
11 CHO N, KIM Y. Modified pure proportional navigation guidance law for impact time control[J]. Journal of Guidance, Control, and Dynamics201639(4): 852-872.
12 DONG W, WANG C Y, WANG J N, et al. Varying-gain proportional navigation guidance for precise impact time control[J]. Journal of Guidance, Control, and Dynamics202346(3): 535-552.
13 TEKIN R, ERER K S, HOLZAPFEL F. Impact time control with generalized-polynomial range formulation[J]. Journal of Guidance, Control, and Dynamics201841(5): 1190-1195.
14 刘远贺, 黎克波, 何绍溟, 等. 基于最优误差动力学的变速导弹飞行路程控制制导律[J]. 航空学报202344(7): 326909.
  LIU Y H, LI K B, HE S M, et al. Flying range control guidance for varying-speed missiles based on optimal error dynamics[J]. Acta Aeronautica et Astronautica Sinica202344(7): 326909 (in Chinese).
15 LEE J I, JEON I S, TAHK M J. Guidance law to control impact time and angle[J]. IEEE Transactions on Aerospace and Electronic Systems200743(1): 301-310.
16 ZHANG Y A, MA G X, LIU A L. Guidance law with impact time and impact angle constraints[J]. Chinese Journal of Aeronautics201326(4): 960-966.
17 张春妍, 宋建梅, 侯博, 等. 带落角和时间约束的网络化导弹协同制导律[J]. 兵工学报201637(3): 431-438.
  ZHANG C Y, SONG J M, HOU B, et al. Cooperative guidance law with impact angle and impact time constraints for networked missiles[J]. Acta Armamentarii201637(3): 431-438 (in Chinese).
18 CHEN X T, WANG J Z. Optimal control based guidance law to control both impact time and impact angle[J]. Aerospace Science and Technology201984: 454-463.
19 SONG J H, SONG S M, XU S L. Three-dimensional cooperative guidance law for multiple missiles with finite-time convergence[J]. Aerospace Science and Technology201767: 193-205.
20 ZHANG S, GUO Y, LIU Z G, et al. Finite-time cooperative guidance strategy for impact angle and time control[J]. IEEE Transactions on Aerospace and Electronic Systems202157(2): 806-819.
21 YOU H, CHANG X L, ZHAO J F, et al. Three-dimensional impact-angle-constrained cooperative guidance strategy against maneuvering target[J]. ISA Transactions2023138: 262-280.
22 ZHOU C, YAN X D, BAN H H, et al. Generalized-newton-iteration-based MPSP method for terminal constrained guidance[J]. IEEE Transactions on Aerospace and Electronic Systems202359(6): 9438-9450.
23 TAN M H, SHEN H. Three-dimensional cooperative game guidance law for a leader-follower system with impact angles constraint[J]. IEEE Transactions on Aerospace and Electronic Systems202460(1): 405-420.
24 WANG P Y, LEE C H, LIU Y H, et al. Nonlinear three-dimensional guidance for impact time and angle control with field-of-view constraint[J]. IEEE Transactions on Aerospace and Electronic Systems202460(1): 264-279.
25 WANG C Y, WANG W L, DONG W, et al. Multiple-stage spatial-temporal cooperative guidance without time-to-go estimation[J]. Chinese Journal of Aeronautics202437(9): 399-416.
26 HARL N, BALAKRISHNAN S N. Impact time and angle guidance with sliding mode control[J]. IEEE Transactions on Control Systems Technology201220(6): 1436-1449.
27 KANG S, TEKIN R, HOLZAPFEL F. Generalized impact time and angle control via look-angle shaping[J]. Journal of Guidance, Control, and Dynamics201842(3): 695-702.
28 KIM T H, LEE C H, JEON I S, et al. Augmented polynomial guidance with impact time and angle constraints[J]. IEEE Transactions on Aerospace and Electronic Systems201349(4): 2806-2817.
29 HOU L B, LUO H W, SHI H, et al. An optimal geometrical guidance law for impact time and angle control[J]. IEEE Transactions on Aerospace and Electronic Systems202359(6): 9821-9830.
30 HU Q L, HAN T, XIN M. New impact time and angle guidance strategy via virtual target approach[J]. Journal of Guidance, Control, and Dynamics201841(8): 1755-1765.
31 WANG C Y, YU H S, DONG W, et al. Three-dimensional impact angle and time control guidance law based on two-stage strategy[J]. IEEE Transactions on Aerospace and Electronic Systems202258(6): 5361-5372.
32 WANG C Y, DONG W, WANG J N, et al. Impact-angle-constrained cooperative guidance for salvo attack[J]. Journal of Guidance, Control, and Dynamics202245(4): 684-703.
33 TEKIN R. Augmented plane pursuit for impact-angle control in three dimensions[J]. Journal of Guidance, Control, and Dynamics202245(9): 1769-1775.
34 李斌, 林德福, 何绍溟, 等. 基于最优误差动力学的时间角度控制制导律[J]. 航空学报201839(11): 322215.
  LI B, LIN D F, HE S M, et al. Time and angle control guidance law based on optimal error dynamics[J]. Acta Aeronautica et Astronautica Sinica201839(11): 322215 (in Chinese).
35 CHEN Y, WU S F, WANG X L. Impact time and angle control optimal guidance with field-of-view constraint[J]. Journal of Guidance, Control, and Dynamics202245(12): 2369-2378.
36 CHEN X T, WANG J Z. Sliding-mode guidance for simultaneous control of impact time and angle[J]. Journal of Guidance, Control, and Dynamics201942(2): 394-401.
文章导航

/