基于可达集的航天器多对一轨道博弈几何求解
收稿日期: 2024-06-06
修回日期: 2024-06-15
录用日期: 2024-07-11
网络出版日期: 2024-07-22
基金资助
国家自然科学基金(12172043)
Geometrical solution of multi-pursuer/one-evader orbital pursuit-evasion game based on reachable set theory
Received date: 2024-06-06
Revised date: 2024-06-15
Accepted date: 2024-07-11
Online published: 2024-07-22
Supported by
National Natural Science Foundation of China(12172043)
航天器轨道博弈对保障我国空间资产安全具有重要意义。相对于经典“一对一”轨道博弈问题,“多对一”轨道博弈面临状态参数维度高、追逐者角色未定、终端条件多变等难题,致使传统基于最优控制理论的微分对策方法求解困难。为克服上述困难,提出了一种基于航天器可达集的多对一轨道博弈几何求解方法。首先,基于航天器可达集理论建立轨道博弈纳什均衡点的可达集等价表征;然后,基于网格点搜索法精确求解任意时刻航天器可达集包络,进而通过计算三角剖分闭合曲面的立体角确定参与博弈航天器可达集之间的相对几何关系;最后,利用二分法搜索来确定满足纳什均衡点可达集几何条件的博弈末端时刻,进而确定博弈结束时的航天器空间位置坐标,完成对多对一轨道博弈问题的求解。仿真结果表明,对一个典型的“三对一”轨道博弈算例,在普通个人计算机上传统微分对策方法求解耗时约2 h,而所提几何方法可在12 min内给出相近的解。
李兆航 , 温昶煊 , 乔栋 , 庞博 . 基于可达集的航天器多对一轨道博弈几何求解[J]. 航空学报, 2024 , 45(S1) : 730803 -730803 . DOI: 10.7527/S1000-6893.2024.30803
The orbital game between spacecraft has significant importance for space safety. Compared to the classical “one-to-one” orbital game problem, the “many-to-one” orbital game faces challenges such as high-dimensional state parameters, undefined roles of pursuers, and variable terminal conditions, making traditional differential strategy methods difficult to solve. To overcome these challenges, this paper proposes a geometric method for the “many-to-one” orbital game based on the reachable set of spacecraft. Firstly, the reachable set equivalence representation of Nash equilibrium points in the orbital game is established based on the theory of reachable sets of spacecraft. Then, the envelopment of the reachable set of spacecraft at any time is accurately solved using a grid point search method. Subsequently, the relative geometric relationship between the reachable sets of spacecraft involved in the game is determined by computing the solid angle of the triangulated closed surface. Finally, the binary search method is used to determine the terminal time of the game, that satisfies the geometric conditions of the reachable set of Nash equilibrium points, thereby determining the spatial position coordinates of the spacecraft at the end of the game and completing the solution to the “many-to-one” orbital game problem. Simulation results demonstrate that for a typical “three-to-one” orbital game scenario, the traditional differential strategy method takes over 2 h on an ordinary personal computer. In contrast, the proposed geometric method can provide the same solution within 12 min.
1 | SEMSAR-KAZEROONI E, KHORASANI K. Multi-agent team cooperation: A game theory approach[J]. Automatica, 2009, 45(10): 2205-2213. |
2 | BATHER J A. Differential games: A mathematical theory with applications to warfare and pursuit, control and optimization[J]. Journal of the Royal Statistical Society Series A: Statistics in Society, 1966, 129(3): 474-475. |
3 | 赵力冉,党朝辉, 张育林. 空间轨道博弈: 概念、原理与方法[J]. 指挥与控制学报, 2021, 7(3): 215-224. |
ZHAO L R, DANG Z H, ZHANG Y L. Orbital game:Concepts, principles and methods[J]. Journal of Command and Control, 2021, 7(3): 215-224. | |
4 | WEINTRAUB I E, PACHTER M, GARCIA E. An introduction to pursuit-evasion differential games[C]∥2020 American Control Conference (ACC). Piscataway: IEEE Press, 2020: 1049-1066. |
5 | RUSNAK I. Games based guidance in anti Missile defence for high order participants[C]∥Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference. Piscataway: IEEE Press, 2010: 812-817. |
6 | SHINAR J, GUTMAN S. Recent advances in optimal pursuit and evasion[C]∥1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes. Piscataway: IEEE Press, 1978: 960-965. |
7 | SHINAR J. Solution techniques for realistic pursuit-evasion games[M]∥Control and Dynamic Systems. Amsterdam: Elsevier, 1981: 63-124. |
8 | 陈迎春, 齐欢. 基于协同进化算法的导弹与飞机追逃对策[J]. 系统工程与电子技术, 2009, 31(8): 1910-1913. |
CHEN Y C, QI H. Pursuit-evasion game between missile and airplane based on co-evolutionary algorithm[J]. Systems Engineering and Electronics, 2009, 31(8): 1910-1913 (in Chinese). | |
9 | CALISE A J, YU X M. An analysis of a four state model for pursuit-evasion games[C]∥1985 24th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 1985: 1119-1121. |
10 | 彭伟, 刘晓明, 彭辉, 等. 有限次重复博弈下的网络攻击行为研究[J]. 指挥于控制学报, 2015, 1(4): 476-479. |
PENG W, LIU X, PENG H, et al. Behavior model of network attacker in finite repeated games[J]. Journal of Command and Control, 2015, 1(4): 476-479. | |
11 | LI Z Y, ZHU H, YANG Z, et al. A dimension-reduction solution of free-time differential games for spacecraft pursuit-evasion[J]. Acta Astronautica, 2019, 163: 201-210. |
12 | CHAI Y, LUO J J, HAN N, et al. Linear quadratic differential game approach for attitude takeover control of failed spacecraft[J]. Acta Astronautica, 2020, 175: 142-154. |
13 | CONWAY B A, PONTANI M. Numerical solution of the three-dimensional orbital pursuit-evasion game[J]. Journal of Guidance Control Dynamics, 2009, 32(2): 474-487. |
14 | Antman S S, Marsden l E, Sirovich L, et al. Level set methods and dynamic implicit surfaces[J]. Computers & Mathematics with Applications, 2003, 46(5-6): 983-984. |
15 | SUN W, TSIOTRAS P, LOLLA T, et al. Multiple-pursuer/one-evader pursuit-evasion game in dynamic flowfields[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(7): 1627-1637. |
16 | SUN W, TSIOTRAS P, YEZZI A J. Multiplayer pursuit-evasion games in three-dimensional flow fields[J]. Dynamic Games and Applications, 2019, 9(4): 1188-1207. |
17 | LOLLA T, LERMUSIAUX P F J, UECKERMANN M P, et al. Time-optimal path planning in dynamic flows using level set equations: Theory and schemes[J]. Ocean Dynamics, 2014, 64(10): 1373-1397. |
18 | LOLLA T, UECKERMANN M P, YI?IT K, et al. Path planning in time dependent flow fields using level set methods[C]∥2012 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2012: 166-173. |
19 | MIN C. Local level set method in high dimension and codimension[J]. Journal of Computational Physics, 2004, 200(1): 368-382. |
MIN C. Local level set method in high dimension and codimension[J]. Journal of Computational Physics, 2004, 200(1): 368-382. | |
20 | PANG B, ZHANG G, HAN H, et al. Multiple-pursuer/One-evader orbital pursuit-evasion game based on reachable set method[C]∥AAS/AIAA Astrodynamics Specialist Conference. Lake Tahoe: AAS Publication Office, 2021: 4149-4168. |
21 | MA H D, ZHANG G. Delta-V analysis for impulsive orbital pursuit-evasion based on reachable domain coverage[J]. Aerospace Science and Technology, 2024, 150: 109243. |
22 | PANG B, WEN C X. Reachable set of spacecraft with finite thrust based on grid method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 2720-2731. |
23 | JANSSON O, HARRIS M W. A geometrical, reachable set approach for constrained pursuit-evasion games with multiple pursuers and evaders[J]. Aerospace, 2023, 10(5): 477. |
24 | GONG H R, GONG S P, LI J F. Pursuit-evasion game for satellites based on continuous thrust reachable domain[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4626-4637. |
25 | VAN OOSTEROM A, STRACKEE J. The solid angle of a plane triangle[J]. IEEE Transactions on Bio-Medical Engineering, 1983, 30(2): 125-126. |
26 | Mathworld. Solid Angle-from Wolfram MathWorld[EB/OL]. (2024-05-01)[2024-06-04]. . |
/
〈 |
|
〉 |