基于误差累积因子的高超声速飞行器渐进控制
收稿日期: 2024-05-29
修回日期: 2024-06-11
录用日期: 2024-07-03
网络出版日期: 2024-07-22
基金资助
国家自然科学基金(42404014)
Asymptotic control of hypersonic flight vehicle based on error accumulation factor
Received date: 2024-05-29
Revised date: 2024-06-11
Accepted date: 2024-07-03
Online published: 2024-07-22
Supported by
National Natural Science Foundation of China(42404014)
针对高超声速飞行器的轨迹跟踪问题,开展基于误差累积因子的渐进自适应控制方法研究。考虑模型未知,尽管传统基于神经网络/模糊系统的智能控制算法能够通过对模型中未知动态进行重构和补偿实现对期望指令的稳定跟踪,但是由于重构误差的存在,并不能获得精确跟踪结果。为解决高超声速飞行器在未知模型下的渐进跟踪控制问题,通过引入误差累积因子的概念构建了一种改进型Lyapunov函数,并基于此设计了一种新型模糊自适应控制算法,该算法通过保证设计的Lyapunov函数始终有界来实现系统的渐进跟踪性能,无需对模糊重构误差进行额外处理。Lyapunov稳定性理论证明了闭环系统的稳定性,对比仿真验证了所提控制算法的有效性。
梁帅 , 高广乐 , 曲晓雷 , 李雅君 . 基于误差累积因子的高超声速飞行器渐进控制[J]. 航空学报, 2024 , 45(S1) : 730745 -730745 . DOI: 10.7527/S1000-6893.2024.30745
Aiming at the trajectory tracking problem of hypersonic flight vehicle, an asymptotic adaptive control method based on error accumulation factor is studied. This paper investigates the problem of asymptotic tracking control of hypersonic flight vehicle with unknown model. Considering the model unknown, the traditional intelligent control algorithm based on the neural network/fuzzy system can achieve stable tracking of the expected instructions by reconstructing and compensating for the unknown dynamics in the model, but it cannot obtain accurate tracking results due to the existence of reconstruction errors. To solve the problem of asymptotic tracking control of hypersonic flight vehicle with unknown model, a Modified Lyapunov Function (MLF) is constructed by introducing the concept of error accumulation factor, and a new fuzzy adaptive control algorithm is designed based on the MLF. By ensuring the boundedness of the modified Lyapunov function, the algorithm can achieve asymptotic tracking without extra processing of the fuzzy reconstruction error. The stability of the closed-loop system is proved by means of the Lyapunov stability theory, and the effectiveness of the control algorithm proposed is verified by comparison with the simulation results.
1 | 闫斌斌, 林泽淮, 刘双喜, 等. 基于动态逆控制的高超声速飞行器飞/发一体化控制方法研究[J]. 西北工业大学学报, 2023, 41(5): 878-886. |
YAN B B, LIN Z H, LIU S X, et al. Research on integrated aircraft-engine control method of hypersonic vehicle based on dynamic inversion control[J]. Journal of Northwestern Polytechnical University, 2023, 41(5): 878-886 (in Chinese). | |
2 | GAO Y B, LIU J X, WANG Z H, et al. Interval type-2 FNN-based quantized tracking control for hypersonic flight vehicles with prescribed performance[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(3): 1981-1993. |
3 | 徐世昊, 关英姿, 浦甲伦, 等. VTHL运载器再入返回预设时间滑模控制[J]. 航空学报, 2023, 44(7): 326857. |
XU S H, GUAN Y Z, PU J L, et al. Predefined-time sliding mode control for VTHL launch vehicle in reentry phase[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 326857 (in Chinese). | |
4 | ZHANG J H, CHEN D D, SHEN G H, et al. Disturbance observer based adaptive fuzzy sliding mode control: a dynamic sliding surface approach[J]. Automatica, 2021, 129: 109606. |
5 | 朱斌, 孙瑞胜, 陈洁卿, 等. 含有非匹配干扰和未知动态的非仿射系统滑模控制算法[J]. 控制理论与应用, 2021, 38(6): 862-870. |
ZHU B, SUN R S, CHEN J Q, et al. Sliding mode control for unknown non-affine system with mismatched disturbances[J]. Control Theory & Applications, 2021, 38(6): 862-870 (in Chinese). | |
6 | CHEN H L, WANG P, TANG G J. Fuzzy disturbance observer-based fixed-time sliding mode control for hypersonic morphing vehicles with uncertainties[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 3521-3530. |
7 | 张洪珠, 叶东, 孙兆伟. 输入量化下航天器位姿一体化预设时间控制[J]. 航空学报, 2023, 44(22): 328558. |
ZHANG H Z, YE D, SUN Z W. Predefined-time integrated pose control for spacecraft under input quantization[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 328558 (in Chinese). | |
8 | CHEN M, YAN K, WU Q X. Multiapproximator-based fault-tolerant tracking control for unmanned autonomous helicopter with input saturation[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(9): 5710-5722. |
9 | XU B, WANG X, SUN F C, et al. Intelligent control of flexible hypersonic flight dynamics with input dead zone using singular perturbation decomposition[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(9): 5926-5936. |
10 | XU B, SHOU Y X, SHI Z K, et al. Predefined-time hierarchical coordinated neural control for hypersonic reentry vehicle[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(11): 8456-8466. |
11 | XU B, SHOU Y X, WANG X, et al. Finite-time composite learning control of strict-feedback nonlinear system using historical stack[J]. IEEE Transactions on Cybernetics, 2023, 53(9): 5777-5787. |
12 | LIANG S, XU B, ZHANG Y M. Robust self-learning fault-tolerant control for hypersonic flight vehicle based on ADHDP[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(9): 5295-5306. |
13 | GE S S, HANG C C, WOON L C. Adaptive neural network control of robot manipulators in task space[J]. IEEE Transactions on Industrial Electronics, 1997, 44(6): 746-752. |
14 | KWAN C, DAWSON D M, LEWIS F L. Robust adaptive control of robots using neural network: global stability[J]. Asian Journal of Control, 2001, 3(2): 111-121. |
15 | CAO L, HUANG X C, YE H F, et al. Neuroadaptive asymptotic tracking control with guaranteed performance under mismatched uncertainties and saturated inputs[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(6): 3784-3794. |
16 | ZHU Y, NIU B, SHANG Z H, et al. Distributed adaptive asymptotic consensus tracking control for stochastic nonlinear MASs with unknown control gains and output constraints[J/OL]. IEEE Transactions on Automation Science and Engineering, (2024-03-02) [2024-05-14], . |
17 | PARKER J T, SERRANI A, YURKOVICH S, et al. Control-oriented modeling of an air-breathing hypersonic vehicle[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 856-869. |
18 | HU C F, ZHOU X P, SUN B H, et al. Nussbaum-based fuzzy adaptive nonlinear fault-tolerant control for hypersonic vehicles with diverse actuator faults[J]. Aerospace Science and Technology, 2017, 71: 432-440. |
19 | CHEN M, GE S S. Adaptive neural output feedback control of uncertain nonlinear systems with unknown hysteresis using disturbance observer[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7706-7716. |
20 | LI Y J, LIANG S, XU B, et al. Predefined-time asymptotic tracking control for hypersonic flight vehicles with input quantization and faults[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 2826-2837. |
21 | LIU Y H. Dynamic surface asymptotic tracking of a class of uncertain nonlinear hysteretic systems using adaptive filters[J]. Journal of the Franklin Institute, 2018, 355(1): 123-140. |
22 | XU B. Composite learning finite-time control with application to quadrotors[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(10): 1806-1815. |
/
〈 |
|
〉 |