论 文

GNSS拒止下多源自主导航鲁棒滤波方法

  • 南子寒 ,
  • 刘大禹 ,
  • 董明 ,
  • 梁文宁 ,
  • 赵雪薇 ,
  • 马伊琳 ,
  • 关瑶
展开
  • 1.北京航天控制仪器研究所,北京 100039
    2.北京电子工程总体研究所,北京 100854
    3.北京跟踪与通信技术研究所,北京 100094
    4.智慧地球重点实验室,北京 100094
    5.中国航天科技集团有限公司,北京 100048
.E-mail: nan657584155@163.com

收稿日期: 2024-06-04

  修回日期: 2024-06-24

  录用日期: 2024-07-04

  网络出版日期: 2024-07-11

基金资助

航天科技集团九院科技委青年基金(KJWQN202402)

Robust filtering method for GNSS denied multi-source autonomous navigation

  • Zihan NAN ,
  • Dayu LIU ,
  • Ming DONG ,
  • Wenning LIANG ,
  • Xuewei ZHAO ,
  • Yilin MA ,
  • Yao GUAN
Expand
  • 1.Beijing Institute of Aerospace Control Devices,Beijing  100039,China
    2.Beijing Institute of Electrical Engineering,Beijing  100854,China
    3.Beijing Institute of Tracking and Telecommunications Technology,Beijing  100094,China
    4.Key Laboratory of Smart Earth,Beijing  100094,China
    5.China Aerospace Science and Technology Corporation,Beijing  100048,China

Received date: 2024-06-04

  Revised date: 2024-06-24

  Accepted date: 2024-07-04

  Online published: 2024-07-11

Supported by

Aerospace Science and Technology Group Ninth Academy Science and Technology Committee Youth Fund(KJWQN202402)

摘要

针对飞行器在卫星拒止环境下的高精度、高完备等导航定位需求,提出了一种融合捷联惯导、卫星导航和气压高度计的多源自主导航鲁棒滤波方法。在量测中断后较短的时间内,该方法通过量测不确定性与非线性误差模型的滤波器估计,能够精确量化紧组合导航模式中的状态空间模型,在深入分析量测异常向量对滤波器状态输出的作用机理基础上,引入鲁棒容积卡尔曼滤波设计,有效改善了误差协方差矩阵的抑制效果,提升了多源自主导航解译过程中滤波器的稳定性和状态方程的估计精度。仿真结果表明:典型飞行运动模式下,该方法相对于传统的容积卡尔曼滤波,陀螺仪与加速度计的零偏状态估计精度提升约31%,自主导航系统定位精度提升约23.77%,并更好地抑制了姿态角误差,为国家综合PNT体系多源自主导航终端的可靠应用提供了参考借鉴。

本文引用格式

南子寒 , 刘大禹 , 董明 , 梁文宁 , 赵雪薇 , 马伊琳 , 关瑶 . GNSS拒止下多源自主导航鲁棒滤波方法[J]. 航空学报, 2024 , 45(S1) : 730782 -730782 . DOI: 10.7527/S1000-6893.2024.30782

Abstract

To meet the requirements for high precision and high completeness in navigation and positioning of spacecraft in the environment of satellite rejection, a robust filtering method for multi-source autonomous navigation is proposed, which combines strapdown inertial navigation, satellite navigation and barometric altimeter. In a short period of time after measurement interruption, this method can accurately quantify the state space model in the tightly integrated navigation model through the filter estimation of the measurement uncertainty and nonlinear error model. Based on an in-depth analysis of the mechanism of the measurement anomaly vector’s action on the filter state output, a robust volume Kalman filter is proposed. The suppression effect of error covariance matrix is effectively improved, and the stability of filter and the estimation accuracy of state equation are improved in the process of multi-source autonomous navigation interpretation. The simulation results show that compared with the traditional volume Kalman filter, the method proposed can improve the accuracy of zero bias estimation of the gyroscope and accelerometer by about 31% and the positioning accuracy of autonomous navigation system by about 23.77%, and suppress the attitude angle error. This study can provide a reference for the terminal application of multi-source autonomous navigation system of the new generation of national integrated PNT system.

参考文献

1 王巍, 邢朝洋, 冯文帅. 自主导航技术发展现状与趋势[J]. 航空学报202142(11): 525049.
  WANG W, XING C Y, FENG W S. State of the art and perspectives of autonomous navigation technologyl[J]. Acta Aeronautica et Astronautica Sinica202142(11): 525049 (in Chinese).
2 王巍, 孟凡琛, 阚宝玺. 国家综合PNT体系下的多源自主导航系统技术[J]. 导航与控制202221(3): 1-10.
  WANG W, MENG F C, KAN B X. Multi-source autonomous navigation system technology under national comprehensive PNT system[J]. Navigation and Control202221(3): 1-10 (in Chinese).
3 王巍. 多源自主导航系统基本特性研究[J]. 宇航学报202344(4): 519-529.
  WANG W. Research on basic characteristics of multi-source autonomous navigation system[J]. Journal of Astronautics202344(4): 519-529 (in Chinese).
4 包为民. 可重复使用运载火箭技术发展综述[J]. 航空学报202344(23): 629555.
  BAO W M. A review of reusable launch vehicle technology development[J]. Acta Aeronautica et Astronautica Sinica202344(23): 629555 (in Chinese).
5 张士峰, 李俊, 杨华波. 惯性制导工具误差分离技术综述[J]. 航空学报202344(15): 528590.
  ZHANG S F, LI J, YANG H B. Review of inertial guidance instrumental error separation techniques[J]. Acta Aeronautica et Astronautica Sinica202344(15): 528590 (in Chinese).
6 SUN R, YANG Y X, CHIANG K W, et al. Robust IMU/GPS/VO integration for vehicle navigation in GNSS degraded urban areas[J]. IEEE Sensors Journal202020(17): 10110-10122.
7 王巍, 吴志刚, 孟凡琛, 等. 多源自主导航系统可信性研究[J]. 导航与控制202322(1): 1-9.
  WANG W, WU Z G, MENG F C, et al. Research on dependability of multi-source autonomous navigation system[J]. Navigation and Control202322(1): 1-9 (in Chinese).
8 SHAHKAR S, KHORASANI K. Optimization of localization error in multi-agent systems through cooperative positioning: autonomous navigation in partially denied GNSS environments[C]∥2023 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL). Piscataway: IEEE Press, 2023: 1-4.
9 王大轶, 李嘉兴, 董天舒, 等. 基于航天器可观测性理论的多源融合自主导航技术[J]. 前瞻科技20221(1): 146-158.
  WANG D Y, LI J X, DONG T S, et al. Multi-source fusion autonomous navigation technologies based on spacecraft observability theory[J]. Science and Technology Foresight20221(1): 146-158 (in Chinese).
10 何劢航, 孙付平, 肖凯, 等. 自适应前后向平滑算法在组合导航中的应用[J]. 导航定位学报202210(6): 151-156.
  HE M H, SUN F P, XIAO K, et al. Adaptive forward-backward-smoothing algorithm with application to integrated navigation[J]. Journal of Navigation and Positioning202210(6): 151-156 (in Chinese).
11 ZHONG Y L, CHEN X Y, ZHOU Y C, et al. Adaptive particle filtering with variational Bayesian and its application for INS/GPS integrated navigation[J]. IEEE Sensors Journal202323(17): 19757-19770.
12 孙洪驰, 穆荣军, 龙腾, 等. 临近空间飞行器北斗/INS高动态深组合导航方法[J]. 航空学报202243(9): 325672.
  SUN H C, MU R J, LONG T, et al. Beidou/INS high dynamic deeply integrated navigation of near-space vehicle[J]. Acta Aeronautica et Astronautica Sinica202243(9): 325672 (in Chinese).
13 孙玉梅, 王学伟, 任宪洁. 一种GNSS/SINS组合导航的改进鲁棒滤波算[J]. 弹箭与制导学报202444(1):6-12.
  SUN Y M, WANHG X W, REN X J. An improve-d robust filtering algorithm for GNSS/SINS integra-ted navigation system[J]. Journal of Projectiles, Rockets, Missiles and Guidance202444(1): 6-12 (in Chinese).
14 孙照强, 魏巍, 王志贵, 等. 弹道目标跟踪滤波方法研究[J]. 现代防御技术202250(1): 67-73.
  SUN Z Q, WEI W, WANG Z G, et al. Research on tracking and filtering method of ballistic target?[J]. Modern Defence Technology202250(1): 67-73 (in Chinese).
15 朱徐东, 赖际舟, 周本川, 等. 基于构型寻优的多无人机鲁棒自适应协同定位方法[J]. 中国惯性技术学报202331(7): 650-658, 664.
  ZHU X D, LAI J Z, ZHOU B C, et al. Robust adaptive cooperative localization method for multiple UAVs based on configuration optimization[J]. Journal of Chinese Inertial Technology202331(7): 650-658, 664 (in Chinese).
16 LI S P, CUI N G, MU R J. Dynamic-covariance-scaling-based robust sigma-point information filtering[J]. Journal of Guidance Control Dynamics202144(9): 1677-1684.
17 SHEN K, LI Y L, LIU T X, et al. Adaptive-robust fusion strategy for autonomous navigation in GNSS-challenged environments[J]. IEEE Internet of Things Journal202411(4): 6817-6832.
18 TIAN B, LI W S, YU X, et al. Composite disturbances nonlinear filtering for simultaneous state and unknown input estimation under non-gaussian noises[J]. IEEE Transactions on Instrumentation and Measurement202473: 9509410.
19 王巍, 郭雷, 孟凡琛, 等. 多源自主导航系统完备性研究[J]. 导航与控制202322(1): 10-18.
  WANG W, GUO L, MENG F C, et al. Research on completeness of multi-source autonomous navigation system[J]. Navigation and Control202322(1): 10-18 (in Chinese).
20 秦永元. 惯性导航[M]. 北京: 科学出版社, 2006: 325-330.
  QIN Y Y. Guidance[M]. Beijing: Science Press, 2006: 325-330 (in Chinese).
21 张文钧, 蒋良孝, 张欢, 等. 一种基于偏差–方差权衡的贝叶斯分类学习框架[J]. 中国科学:信息科学202353(6): 1078-1095.
  ZHANG W J, JIANG L X, ZHANG H, et al. Bayesian classification learning framework based on bias-variance trade-off[J]. Science China Information Sciences202353(6): 1078-1095 (in Chinese).
文章导航

/