风洞试验模型振动机理及主动控制研究进展
收稿日期: 2024-03-29
修回日期: 2024-05-15
录用日期: 2024-06-14
网络出版日期: 2024-07-11
基金资助
智强基金(2023);航空科学基金(20220015053002)
Model vibration mechanism and active control in wind tunnel test: Review
Received date: 2024-03-29
Revised date: 2024-05-15
Accepted date: 2024-06-14
Online published: 2024-07-11
Supported by
ZhiQiang Fund (2023);Aeronautical Science Fundation of China(20220015053002)
风洞常规测力试验中经常会出现模型大幅度振动的问题,影响试验数据精度甚至威胁设备安全。深入认识模型振动的发生机理,结合有效的控制手段减小试验中的模型振动幅值,对风洞试验研究有重要意义。首先介绍了风洞模型振动的危害与减小模型振动的意义,分析了模型发生振动的机理,总结了常见的减小模型振动的方法及其研究进展,重点分析了主动振动控制方法涉及的内容与技术难点。已有的研究工作表明,在各种减缓模型振动的方法中,以压电堆作为作动器的主动控制方法最能符合工程实用要求,且减振效果较好。最后对大型风洞中模型振动控制需要研究的问题给出了若干建议。
寇西平 , 曾开春 , 马涛 , 路波 , 杨智春 . 风洞试验模型振动机理及主动控制研究进展[J]. 航空学报, 2025 , 46(1) : 30467 -030467 . DOI: 10.7527/S1000-6893.2024.30467
Undesirable model vibration often occurs in a conventional wind tunnel force test. Large amplitude model vibrations may adversely affect test data and even threaten the safe operation of equipment. It is therefore of great importance to fully understand the mechanism of model vibration occurrence and reduce the vibration amplitude by effective means in wind tunnel tests. This paper first introduces the harms of model vibration, followed by a summary of model vibration types. The progress of reducing model vibrations by various methods are then presented, and the key points and technical difficulties involved in the active control method analyzed. The existing literature shows that the active control method with the piezoelectric stack as the actuator can best meet the requirements of the engineering practice, with better vibration damping effect than others. Finally, suggestions regarding future research on model vibration control in large-scale wind tunnels are presented.
1 | 王发祥. 高速风洞试验[M]. 北京: 国防工业出版社, 2003. |
WANG F X. High speed wind tunnel test[M]. Beijing: National Defence Industry Press, 2003 (in Chinese). | |
2 | MABEY D G, WELSH B L, PYNE C R. A review of rigid body response on sting supported models at high angles of incidence[J]. Progress in Aerospace Sciences, 1991, 28(2): 133-170. |
3 | QUIX H, QUEST J. Assessing model dynamics within the critical alpha range[C]∥Proceedings of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014. |
4 | 郭旭, 赵岩. 大型风洞设计建设中的结构力学问题[J]. 中国科学基金, 2017, 5(9): 432-437. |
GUO X, ZHAO Y. Structure mechanics problems in the large scale wind tunnel design and building[J]. Bulletin of National Natural Science Foundation of China, 2017, 5(9): 432-437 (in Chinese). | |
5 | YOUNG C, POPERNACK T, GLOSS B. National transonic facility model and model support vibration problems[C]∥Proceedings of the 16th Aerodynamic Ground Testing Conference. Reston: AIAA, 1990. |
6 | KILGORE W, BALAKRISHNA S, BUTLER D. Reduction of tunnel dynamics at the National Transonic Facility[C]∥Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. |
7 | PARKER R. Resonance effects in wake shedding from parallel plates: Calculation of resonant frequencies[J]. Journal of Sound Vibration, 1967, 5(2): 330-343. |
8 | EDWARDS J W. National transonic facility model and tunnel vibrations[J]. Journal of Aircraft, 2009, 46(1): 46-52. |
9 | FUYKSCHOT P, KOOI J. Stall flutter of sting-supported wind tunnel models[C]∥24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2004. |
10 | RIVERS M B, BALAKRISHNA S. NASA common research model test envelope extension with active sting damping at NTF[C]∥32nd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2014. |
11 | 李山青, 刘正兴, 杨耀文. 压电材料在智能结构形状和振动控制中的应用[J]. 力学进展, 1999, 29(1): 66. |
LI S Q, LIU Z X, YANG Y W. The applications of piezoelectric materials on shape control and vibration control of smart structures [J]. Advances in Mechanics, 1999, 29(1): 66 (in Chinese). | |
12 | 梁鉴, 张卫国, 王勋年, 等. 4 m×3 m风洞无人机模型振动抑制系统研制[J]. 实验流体力学, 2007, 21(4): 65-70. |
LIANG J, ZHANG W G, WANG X N, et al. Development for restraining oscillation device of the UAV model in the 4 m × 3 m wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(4): 65-70 (in Chinese). | |
13 | 路波, 寇西平, 曾开春, 等. 风洞常规试验模型尾支杆减振装置: CN208765926U[P]. 2019-04-19. |
LU B, KOU X P, ZENG K C, et al. Wind tunnel test model tail sting vibration damping device: CN208765926U[P]. 2019-04-19 (in Chinese). | |
14 | ?UR?I? D, SAMARD?I? M, MARINKOVSKI D, et al. Model sting support with hard metal core for measurement in the blowdown pressurized wind tunnel[J]. Measurement, 2016, 79: 130-136. |
15 | 赖志伟, 王成勇, 郑李娟, 等. 硬质合金激光加工研究进展[J]. 硬质合金, 2022, 39(5): 335-349. |
LAI Z W, WANG C Y, ZHENG L J, et al. Research progress of laser processing of cemented carbide[J]. Cemented Carbide, 2022, 39(5): 335-349 (in Chinese). | |
16 | 刘光远. 蜂窝结构支杆测试验证试验[R]. 绵阳: 中国空气动力研究与发展中心, 2022. |
LIU G Y. Verification test on honeycomb structure sting [R]. Mianyang: China Aerodynamics Research and Development Center, 2022 (in Chinese). | |
17 | GLAESE R, BALES G, HSU S, et al. Reduction of dynamic response of a wind tunnel sting mount using a hub damper unit[C]∥48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
18 | HSU S, MOR M, STIRLING B, et al. Reduction of dynamic response of a wind tunnel sting mount using co-cured composite and viscoelastic materials[C]∥Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
19 | PAN J H, LIU Z Q, KOU X P, et al. Constrained layer damping treatment of a model support sting[J]. Chinese Journal of Aeronautics, 2021, 34(8): 58-64. |
20 | 常冠军. 粘弹性阻尼材料[M]. 北京: 国防工业出版社, 2012. |
CHANG G J. Viscoelastic damping materials[M]. Beijing: National Defense Industry Press, 2012 (in Chinese). | |
21 | WILLIAN B I, FRANCIS J C. Reduction of wind-tunnel-model vibration by means of a tuned damped vibration absorber installed in the model: NASA TM X-1606[R]. Washington, D.C.: NASA, 1968. |
22 | MABEY D G, ASHILL P R, WELSH B L. Aeroelastic oscillations caused by transitional boundary layers and their attenuation[J]. Journal of Aircraft, 1987, 24(7): 463-469. |
23 | 陈卫东, 邵敏强, 杨兴华, 等. 跨声速风洞测力模型主动减振系统的试验研究[J]. 振动工程学报, 2007, 20(1): 91-96. |
CHEN W D, SHAO M Q, YANG X H, et al. Experimental evaluation of an active vibration control system for wind tunnel aerodynamic models[J]. Journal of Vibration Engineering, 2007, 20(1): 91-96 (in Chinese). | |
24 | 邵敏强. 复杂激励环境下分布式结构的振动主动控制研究[D]. 南京: 南京航空航天大学, 2012: 105-116. |
SHAO M Q. Research on active vibration control of distributed structure under complex excitation environment[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 105-116 (in Chinese). | |
25 | 姚晓成, 赵程, 曾涛. 压电材料在振动控制领域的研究进展与应用现状[J]. 机械工程材料, 2019, 43(6): 72-76. |
YAO X C, ZHAO C, ZENG T. Research progress and application status of piezoelectric materials for vibration control[J]. Materials for Mechanical Engineering, 2019, 43(6): 72-76 (in Chinese). | |
26 | WIMMEL R, FEHREN H, GNAUERT U, et al. 5 dof active vibration control with a piezoceramic driven multifunctional interface for high load application[C]∥Seventh International Conference on Adaptive Structures, 1997: 61-70 |
27 | 鲁继文. 风洞模型支杆系统设计及振动主动控制[D]. 大连: 大连理工大学, 2018: 6-10. |
LU J W. Design of wind tunnel model strut system and active vibration control[D]. Dalian: Dalian University of Technology, 2018: 6-10 (in Chinese) . | |
28 | 沈星, 涂凡凡, 陈金金, 等. 风洞悬臂杆结构主动减振系统的研究[J]. 振动、测试与诊断, 2014, 34(3): 414-419. |
SHEN X, TU F F, CHEN J J, et al. Study on active vibration reduction system of cantilever bar structure in wind tunnel[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(3): 414-419 (in Chinese). | |
29 | CHEN J J, SHEN X, TU F F, et al. Experimental research on an active sting damper in a low speed acoustic wind tunnel[J]. Shock and Vibration, 2014, 2014(1): 524351. |
30 | BALAKRISHNA S, HOULDEN H, BUTLER D, et al. Development of a wind tunnel active vibration reduction system[C]∥45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. |
31 | 涂凡凡. 人工神经网络在压电主动减振系统中的应用研究[D]. 南京: 南京航空航天大学, 2013: 38-39. |
TU F F. Application of artificial neural network in piezoelectric active vibration reduction system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 38-39 (in Chinese). | |
32 | FEHREN H, GNAUERT U, WIMMEL R, et al. Validation testing with the active damping system in the European Transonic Windtunnel[C]∥Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001. |
33 | 杨智春, 王巍, 谷迎松, 等. 一种弯曲型压电堆作动器的设计及在振动控制中的应用[J]. 振动与冲击, 2009, 28(9): 130-134. |
YANG Z C, WANG W, GU Y S, et al. Smart structure vibration control using a new bending type of piezoelectric stack actuator[J]. Journal of Vibration and Shock, 2009, 28(9): 130-134 (in Chinese). | |
34 | 宋来收, 夏品奇. 采用压电叠层作动器的弹性梁振动主动控制实验研究[J]. 航空学报, 2014, 35(1): 171-178. |
SONG L S, XIA P Q. Experimental investigation on active vibration control of elastic beam by using piezoelectric stack actuator[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 171-178 (in Chinese). | |
35 | 刘伟国. 支杆式风洞模型主动振动抑制控制方法研究[D]. 大连: 大连理工大学, 2015: 43-78. |
LIU W G. Research on active vibration suppression control method of strut wind tunnel model[D]. Dalian: Dalian University of Technology, 2015: 43-78 (in Chinese). | |
36 | 姜尔东. 支杆式风洞模型主动振动抑制方法与实验研究[D]. 大连: 大连理工大学, 2014: 23-54. |
JIANG E D. Method and experiment research on the active vibration control of wind tunnel model with sting support[D]. Dalian: Dalian University of Technology, 2014: 23-54 (in Chinese). | |
37 | BALAKRISHNA S, BUTLER D, ACHESON M, et al. Design and performance of an active sting damper for the NASA common research model[C]∥Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. |
38 | 陈陆军, 车兵辉, 黄勇, 等. 低速风洞试验模型振动主动控制技术[J]. 南京航空航天大学学报, 2021, 53(4): 591-597. |
CHEN L J, CHE B H, HUANG Y, et al. Active vibration control method for test model in low speed wind tunnel[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(4): 591-597 (in Chinese). | |
39 | 余立, 杨兴华, 寇西平, 等. 跨声速风洞模型主动减振系统试验研究[J]. 南京航空航天大学学报, 2019, 51(4): 526-533. |
YU L, YANG X H, KOU X P, et al. Experiment on active vibration reduction system for transonic wind tunnel model[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(4): 526-533 (in Chinese). | |
40 | 曾开春, 欧阳炎, 寇西平, 等. 风洞模型主动减振结构作动器效率定量表征与提升研究[J]. 振动与冲击, 2022, 41(18): 166-175, 191. |
ZENG K C, OUYANG Y, KOU X P, et al. Quantification and improvement of the actuator effectiveness of an active damper for wind tunnel tests[J]. Journal of Vibration and Shock, 2022, 41(18): 166-175, 191 (in Chinese). | |
41 | 曾开春, 寇西平, 杨兴华, 等. 跨声速风洞试验模型主动减振结构优化设计[J]. 航空学报, 2022, 43(2): 224944. |
ZENG K C, KOU X P, YANG X H, et al. Optimization of active vibration damping structure for transonic wind tunnel test model[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 224944 (in Chinese). | |
42 | 梁力, 杨智春, 欧阳炎, 等. 垂尾抖振主动控制的压电作动器布局优化[J]. 航空学报, 2016, 37(10): 3035-3043. |
LIANG L, YANG Z C, OUYANG Y, et al. Optimization of piezoelectric actuator configuration on a vertical tail for buffeting control[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 3035-3043 (in Chinese). | |
43 | BRUANT I, GALLIMARD L, NIKOUKAR S. Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm[J]. Journal of Sound and Vibration, 2010, 329(10): 1615-1635. |
44 | HU K M, LI H. Multi-parameter optimization of piezoelectric actuators for multi-mode active vibration control of cylindrical shells[J]. Journal of Sound and Vibration, 2018, 426: 166-185. |
45 | LIU W, ZHOU M D, WEN Z Q, et al. An active damping vibration control system for wind tunnel models[J]. Chinese Journal of Aeronautics, 2019, 32(9): 2109-2120. |
46 | 麻越垠, 陈万华, 王元兴, 等. 风洞模型支撑系统振动主动控制试验研究[J]. 机械强度, 2015, 37(2): 232-236. |
MA Y Y, CHEN W H, WANG Y X, et al. Active vibration control experimental investigation on wind tunnel model support system[J]. Journal of Mechanical Strength, 2015, 37(2): 232-236 (in Chinese). | |
47 | 刘巍, 毕晓丹, 贾振元, 等. 风洞模型主动抑制器的设计与实验[J]. 光学精密工程, 2014, 23(10): 2895-2901. |
LIU W, BI X D, JIA Z Y, et al. Design and experiment on active damper of wind tunnel model[J]. Optics and precision engineering, 2015, 23(10): 2895-2901 (in Chinese). | |
48 | DAI Y K, SHEN X, ZHANG L, et al. System identification and experiment evaluation of a piezoelectric-based sting damper in a transonic wind tunnel[J]. Review of Scientific Instruments, 2019, 90(7): 075102. |
49 | 姚壮. 基于神经网络模型的风洞模型抑振研究[D]. 大连: 大连理工大学, 2020: 18-61. |
YAO Z. Study on vibration suppression of wind tunnel model based on neural network model[D]. Dalian: Dalian University of Technology, 2020: 18-61 (in Chinese). | |
50 | 张家昆. 基于时滞与模糊滑模的风洞模型振动控制研究[D]. 大连: 大连理工大学, 2018: 47-66. |
ZHANG J K. Research on vibration control of wind tunnel model based on time delay and fuzzy sliding mode[D].Dalian: Dalian University of Technology, 2018: 47-66 (in Chinese). | |
51 | 陈万华, 王元兴, 沈星, 等. 压电叠堆主动减振的神经网络PID实时控制[J]. 南京航空航天大学学报, 2014, 46(4): 587-593. |
CHEN W H, WANG Y X, SHEN X, et al. Neural network PID real-time control for active vibration reduction using piezoceramics stacks[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(4): 587-593 (in Chinese). | |
52 | DAI Y K, ZHANG L, ZHAO Z P, et al. Wind-tunnel evaluation for an active sting damper using multimodal neural networks[J]. AIAA Journal, 2020, 58(5): 1939-1948. |
53 | LIU W, LIU W X, ZHOU M D, et al. An active vibration control method based on energy-fuzzy for cantilever structures excited by aerodynamic loads[J]. Chinese Journal of Aeronautics, 2021, 34(9): 224-235. |
54 | HASSANI V, TJAHJOWIDODO T, DO T N. A survey on hysteresis modeling, identification and control[J]. Mechanical Systems and Signal Processing, 2014, 49(1-2): 209-233. |
55 | 李伟光. 风洞模型尾撑结构振动压电主动控制研究[D]. 西安: 西北工业大学, 2023: 41-64. |
LI W G. Research on piezoelectric active vibration control of wind tunnel model tail support structure[D]. Xi’an: Northwestern Polytechnical University, 2023: 41-64 (in Chinese). | |
56 | 胡寿松, 王执铨, 胡维礼. 最优控制理论与系统[M]. 2版. 北京: 科学出版社, 2005: 2-7. |
HU S S, WANG Z Q, HU W L. Optimal control theory and system[M]. 2nd ed. Beijing: Science Press, 2005: 2-7 (in Chinese). | |
57 | 张家昆, 贾振元, 刘昱, 等. 基于时滞LQR算法的风洞模型振动控制试验研究[J]. 新技术新工艺, 2018(9): 32-37. |
ZHANG J K, JIA Z Y, LIU Y, et al. Research on experiment of vibration control of wind tunnel model based on time-delay LQR algorithm[J]. New Technology & New Process, 2018(9): 32-37 (in Chinese). | |
58 | 孙华亮. 风洞测力模型的神经网络辨识及振动主动控制研究[D]. 南京: 南京航空航天大学, 2013: 11-53. |
SUN H L. Research on neural network identification and active vibration control of wind tunnel force model[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 11-53 (in Chinese). | |
59 | 薛定宇. 控制系统计算机辅助设计: MATLAB语言与应用[M]. 3版. 北京: 清华大学出版社, 2012: 276-353. |
XUE D Y. Computer aided control systems design using MATLAB language[M]. 3rd ed. Beijing: Tsinghua University Press, 2012: 276-353 (in Chinese). | |
60 | BALAKRISHNA S, BUTLER D, WHITE E, et al. Active damping of sting vibrations in transonic wind tunnel testing[C]∥Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. |
61 | 佘重禧, 陈卫东, 邵敏强. 跨声速风洞测力模型的降阶及H∞减振控制[J]. 噪声与振动控制, 2014, 34(1): 67-71, 81. |
SHE C X, CHEN W D, SHAO M Q. Model reduction and active vibration suppression of a wind tunnel test model by H∞ control[J]. Noise and Vibration Control, 2014, 34(1): 67-71, 81 (in Chinese). | |
62 | 韦亚南. 时滞加速度反馈下风洞测力试验模型的振动主动控制[D]. 南京: 南京航空航天大学, 2015: 30-57. |
WEI Y N. Active vibration control of wind tunnel dynamometer test model under time-delay acceleration feedback[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 30-57 (in Chinese). | |
63 | 佘重禧. 跨声速风洞测力试验模型的振动主动控制研究[D]. 南京: 南京航空航天大学, 2013: 45-58. |
SHE C X. Study on active vibration control of transonic wind tunnel force test model[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 45-58 (in Chinese) . | |
64 | 姜雨丰, 温正权, 姚壮, 等. 基于视觉的风洞支杆主动抑振方法[J]. 新技术新工艺, 2019(6): 67-70. |
JIANG Y F, WEN Z Q, YAO Z, et al. Method of the supporting sting in wind tunnel based on vision active vibration suppression[J]. New Technology & New Process, 2019(6): 67-70 (in Chinese). | |
65 | 汪建晓, 孟光. 磁流变液研究进展[J]. 航空学报, 2002, 23(1): 6-12. |
WANG J X, MENG G. Research advances in magnetorheological fluids[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(1): 6-12 (in Chinese). | |
66 | 卢坤, 刘翎, 杨志荣, 等. 基于磁流变弹性体的推进轴系半主动式吸振器研究[J]. 振动与冲击, 2017, 36(15): 36-42. |
LU K, LIU L, YANG Z R, et al. Semi-active dynamic absorber of a ship propulsion shafting based on MREs[J]. Journal of Vibration and Shock, 2017, 36(15): 36-42 (in Chinese). | |
67 | 汪路路. 1.2米风洞磁流变减振系统研制报告[R]. 绵阳: 中国空气动力研究与发展中心, 2023. |
WANG L L. Vibration damping system based on magnetorheological fluids in 1.2 meter scale wind tunnel[R]. Mianyang: China Aerodynamics Research and Development Center, 2023 (in Chinese). | |
68 | 杨铁军, 石慧, 李新辉, 等. 一种基于智能减振器的船舶机械设备主动减振系统研制[J]. 振动工程学报, 2017, 30(2): 167-176. |
YANG T J, SHI H, LI X H, et al. One active isolation system for marine machine based on smart isolators[J]. Journal of Vibration Engineering, 2017, 30(2): 167-176 (in Chinese). | |
69 | 廖达雄, 黄知龙, 陈振华, 等. 大型低温高雷诺数风洞及其关键技术综述[J]. 实验流体力学, 2014, 28(2): 1-6, 20. |
LIAO D X, HUANG Z L, CHEN Z H, et al. Summary of large-scale low temperature and high Reynolds number wind tunnel and its key technologies[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 1-6, 20 (in Chinese). | |
70 | 王长军. 低温工程用 18Ni200D 锻件技术条件[R]. 北京: 钢铁研究总院有限公司, 2022. |
WANG C J. Technical specifications of 18Ni200D steel forgings in cryogenic engineering[R]. Beijing: Central Iron and Steel Research Institute, 2002 (in Chinese). | |
71 | PHILIP S A, DANA J J, MICHAEL B, et al. Wind tunnel and propulsion test facilities supporting analyses to an assessment of NASA’s capabilities to serve national needs[R]. Arlington: RAND National Defense Research Institute, 2004. |
72 | ACHESON M, BALAKRISHNA S. Effects of active sting damping on common research model data quality[C]∥49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011. |
73 | 杨兴华. 某低温风洞模型减振系统结构设计与保温方案验证报告[R]. 绵阳: 中国空气动力研究与发展中心, 2021. |
YANG X H. Verification report on structure design and insulation scheme of cryogenic wind tunnel model vibration reduction system[R]. Mianyang: China Aerodynamics Research and Development Center, 2021 (in Chinese). |
/
〈 |
|
〉 |