论 文

高速变形飞行器制导控制一体化设计方法

  • 何昊 ,
  • 王鹏
展开
  • 国防科技大学 空天科学学院,长沙 410073
.E-mail: wonderful2035@163.com

收稿日期: 2024-05-16

  修回日期: 2024-06-06

  录用日期: 2024-07-03

  网络出版日期: 2024-07-08

基金资助

国家自然科学基金(92371203)

Integrated guidance and control method for high-speed morphing wing aircraft

  • Hao HE ,
  • Peng WANG
Expand
  • College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China

Received date: 2024-05-16

  Revised date: 2024-06-06

  Accepted date: 2024-07-03

  Online published: 2024-07-08

Supported by

National Natural Science Foundation of China(92371203)

摘要

针对高速变形飞行器制导和姿态回路耦合特性强所导致的分离设计难问题,以反步法和固定时间滑模控制方法作为基础,利用变形飞行器的变形特性,设计了一种考虑飞行器变形特性的制导控制一体化方法。首先建立了飞行器在变形条件下的六自由度完整运动模型,并推导了含有变形附加项的严格反馈形式制导控制一体化模型。随后结合反步法与固定时间滑模控制方法提出了一种新的制导控制一体化设计方法,并通过Lyapunov理论证明了系统的稳定性。最后,在不变形情况下进行了传统方法与所提出设计方法的对比,验证了新方法的快速性和有效性;在有无变形情况下进行了新方法的对比,验证了变形情况下制导控制一体化设计的优越性。

本文引用格式

何昊 , 王鹏 . 高速变形飞行器制导控制一体化设计方法[J]. 航空学报, 2024 , 45(S1) : 730692 -730692 . DOI: 10.7527/S1000-6893.2024.30692

Abstract

The guidance and attitude loops of high-speed morphing wing aircraft has strong coupling characteristics, and are difficult to separate and design. In this paper, an Integrated Guidance and Control (IGC) method considering morphing characteristics is designed based on the Backstepping Method and the Fixed-Time Sliding Mode Control (FTSMC) method. Firstly, a six-degree-of-freedom complete kinematic model of the aircraft under morphing conditions is established, and a strict feedback form of the IGC model with additional deformation terms is derived. Secondly, a novel integrated design method for guidance and control is proposed using the Backstepping Method (BM) combined with FTSMC, and the stability of the system is proved by the Lyapunov theory. Finally, comparison between the traditional method and the new integrated design method is carried out in the case without morphing, which verifies the rapidity and effectiveness of the new method. Comparison of the new method with and without morphing is carried out, which verifies the superiority of the new method in the case with morphing.

参考文献

1 CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft: a review[J]. Chinese Journal of Aeronautics202235(5): 220-246.
2 王鹏, 陈浩岚, 鲍存余, 等. 变形飞行器建模及控制方法研究综述[J]. 宇航学报202243(7): 853-865.
  WANG P, CHEN H L, BAO C Y, et al. Review on modeling and control methods of morphing vehicle[J]. Journal of Aeronautics202243(7): 853-865 (in Chinese).
3 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报202243(10): 527449.
  RAN M P, WANG C C, LIU H H, et al. Research status and future development of morphing aircraft control technology[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527449 (in Chinese).
4 AMEDURI S, CONCILIO A. Morphing wings review: aims, challenges, and current open issues of a technology[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2023237(18): 4112-4130.
5 GURUMUKHI S. Study of various trends for morphing wing technology[J]. Journal of Computational Methods in Sciences and Engineering202121(3): 613-621.
6 岳彩红, 唐胜景, 王肖, 等. 高超声速伸缩式变形飞行器再入制导方法[J]. 北京航空航天大学学报202147(6): 1288-1298.
  YUE C H, TANG S J, WANG X, et al. Reentry guidance method of hypersonic telescopic deformable vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics202147(6): 1288-1298 (in Chinese).
7 PONS A, CIRAK F. Multi-axis nose-pointing-and-shooting in a biomimetic morphing-wing aircraft[J]. Journal of Guidance, Control, and Dynamics202346(3): 499-517.
8 ABOUHEAF M, MAILHOT N Q, GUEAIEB W, et al. Guidance mechanism for flexible-wing aircraft using measurement-interfaced machine-learning platform[J]. IEEE Transactions on Instrumentation and Measurement202069(7): 4637-4648.
9 YAO D D, XIA Q L. Predictor–corrector guidance for a hypersonic morphing vehicle[J]. Aerospace202310(9): 795.
10 ZHANG H, WANG P, TANG G J, et al. Fixed-time sliding mode control for hypersonic morphing vehicles via event-triggering mechanism[J]. Aerospace Science and Technology2023140: 108458.
11 CHEN H L, WANG P, TANG G J. Fuzzy disturbance observer-based fixed-time sliding mode control for hypersonic morphing vehicles with uncertainties[J]. IEEE Transactions on Aerospace and Electronic Systems202359(4): 3521-3530.
12 ZHANG H, WANG P, TANG G J, et al. Fuzzy disturbance observer-based dynamic sliding mode control for hypersonic morphing vehicles[J]. Aerospace Science and Technology2023142: 108633.
13 梁新茹, 高长生, 荆武兴. 高超声速飞行器自适应鲁棒跟踪滤波算法[J]. 宇航学报202344(5): 752-763.
  LIANG X R, GAO C S, JING W X. An adaptive robust filtering algorithm in hypersonic vehicle tracking[J]. Journal of Astronautics202344(5): 752-763 (in Chinese).
14 李墨吟, 马泽远, 周建平, 等. 基于神经网络的变后掠翼飞行器自适应控制方法研究[J]. 弹箭与制导学报202141(5): 73-77, 85.
  LI M Y, MA Z Y, ZHOU J P, et al. Research on adaptive control method of variable-sweep wing aircraft based on neural network[J]. Journal of Projectiles, Rockets, Missiles and Guidance202141(5): 73-77, 85 (in Chinese).
15 HUANG S T, JIANG J, LI O X. Adaptive neural network-based sliding mode backstepping control for near-space morphing vehicle[J]. Aerospace202310(10): 891.
16 CHE H H, CHEN J, WANG Y H, et al. Data-driven model-free adaptive attitude control for morphing vehicles[J]. IET Control Theory & Applications202216(16): 1696-1707.
17 BAO C Y, WANG P, TANG G J. Data-driven based model-free adaptive optimal control method for hypersonic morphing vehicle[J]. IEEE Transactions on Aerospace and Electronic Systems202359(4): 3713-3725.
18 SANTOSO F, GARRATT M A, ANAVATTI S G. State-of-the-art integrated guidance and control systems in unmanned vehicles: a review[J]. IEEE Systems Journal202115(3): 3312-3323.
19 CHAI R Q, TSOURDOS A, SAVVARIS A, et al. Review of advanced guidance and control algorithms for space/aerospace vehicles[J]. Progress in Aerospace Sciences2021122: 100696.
20 赵斌, 梁乐成, 蒋瑞民, 等. 终端角度约束制导及制导控制一体化方法综述[J]. 宇航学报202243(5): 563-579.
  ZHAO B, LIANG L C, JIANG R M, et al. Review of guidance and integrated guidance and control methods under terminal angle constraints[J]. Journal of Astronautics202243(5): 563-579 (in Chinese).
21 郭建国, 梁乐成, 周敏, 等. 高速飞行器俯冲段制导控制一体化综述[J]. 航空兵器202330(1): 1-10.
  GUO J G, LIANG L C, ZHOU M, et al. Overview of integrated guidance and control for hypersonic vehicles in dive phase[J]. Aero Weaponry202330(1): 1-10 (in Chinese).
22 安通, 王鹏, 王建华, 等. 弹性高超声速飞行器动态面制导控制一体化设计方法[J]. 系统工程与电子技术202244(3): 956-966.
  AN T, WANG P, WANG J H, et al. Integrated guidance and control schemes for dynamic surface of flexible hypersonic vehicles[J]. Systems Engineering and Electronics202244(3): 956-966 (in Chinese).
23 唐建, 齐瑞云, 姜斌. 考虑约束的高超声速飞行器制导与控制一体化设计[J]. 宇航学报202243(5): 649-664.
  TANG J, QI R Y, JIANG B. Integrated guidance and control of hypersonic vehicle considering constraints[J]. Journal of Astronautics202243(5): 649-664 (in Chinese).
24 WANG X X, LAN G, LU H Q, et al. Three-dimensional integrated guidance and control with input saturation and impact angle constraints[J]. Aerospace Science and Technology2022127: 107727.
25 张宽桥, 周旋风, 门星火, 等. 固定时间收敛的三维制导控制一体化设计[J]. 北京航空航天大学学报202349(4): 842-852.
  ZHANG K Q, ZHOU X F, MEN X H, et al. Three-dimensional integrated guidance and control design with fixed-time convergence[J]. Journal of Beijing University of Aeronautics and Astronautics 202349(4): 842-852 (in Chinese).
26 LI Z B, DONG Q L, ZHANG X Y, et al. Impact angle-constrained integrated guidance and control for supersonic skid-to-turn missiles using backstepping with global fast terminal sliding mode control[J]. Aerospace Science and Technology2022122: 107386.
27 KHANKALANTARY S, SHEIKHOLESLAM F. Robust extended state observer-based three dimensional integrated guidance and control design for interceptors with impact angle and input saturation constraints[J]. ISA Transactions2020104: 299-309.
28 TANG X Y, YU J L, DONG X W, et al. Integrated guidance and control with impact angle and general field-of-view constraints[J]. Aerospace Science and Technology2024144: 108809.
29 王鹏, 鲍存余, 汤国建. 高超声速飞行器滑翔段制导姿控一体化设计方法研究[J]. 战术导弹技术2020(5): 127-138.
  WANG P, BAO C Y, TANG G J. Research on design of integrated guidance and attitude control for hypersonic vehicle in glide phase[J]. Tactical Missile Technology2020(5): 127-138 (in Chinese).
文章导航

/