曲面加筋结构拓扑优化结果参数化重构方法
收稿日期: 2024-04-22
修回日期: 2024-05-05
录用日期: 2024-05-29
网络出版日期: 2024-07-08
基金资助
国家重点研发计划(2022YFB3404700);辽宁省人工智能领域科技重大专项(2023020702-JH26/101)
Parametric reconstruction method for topology optimization results of curved stiffened structures
Received date: 2024-04-22
Revised date: 2024-05-05
Accepted date: 2024-05-29
Online published: 2024-07-08
Supported by
National Key Research and Development Program Project of China(2022YFB3404700);Major Science and Technology Projects in the Field of Artificial Intelligence of Liaoning Province(2023020702-JH26/101)
曲面加筋结构拓扑优化密度场结果,存在不连续、过小结构特征等问题,难以直接应用于后续精细设计及加工制造,而基于人工经验进行的特征提取及模型重构,存在操作繁琐、重构周期长等问题。针对上述问题,提出了一种面向曲面加筋结构拓扑优化结果的参数化重构方法。首先,针对曲面加筋拓扑优化结果,建立一种三维曲面空间与二维平面空间的映射关系,并基于正向网格映射实现曲面优化结果向平面优化结果的转换;然后,针对平面优化结果,基于图像形态学方法实现轮廓特征参数化提取,并采用样条曲线插值方式实现几何模型重构,获得平面优化结果参数化模型;最后,基于逆向映射网格映射方法,获得曲面优化结果参数化模型,实现曲面加筋结构拓扑优化结果的参数化重构。基于所提出的方法,以承力筒、舱门及密封舱这3种典型曲面加筋结构为对象开展算例研究,并将重构结果与优化结果进行对比。结果表明,参数化重构模型的结构响应与拓扑优化结果误差在5%以内,表明提出的方法具有优异的重构精度。
金栢成 , 田阔 , 黄蕾 . 曲面加筋结构拓扑优化结果参数化重构方法[J]. 航空学报, 2024 , 45(24) : 630586 -630586 . DOI: 10.7527/S1000-6893.2024.30586
The topology optimization density field results of curved stiffened structures have problems such as discontinuity and too small structural features, which make them difficult to be directly applied to subsequent fine design and manufacturing. Meanwhile, feature extraction and model reconstruction based on artificial experience have problems such as cumbersome operation and long reconstruction period. To address the above problems, a parametric reconstruction for topology features of curved stiffened structures method is proposed. Firstly, a mapping relationship between three-dimensional surface space and two-dimensional planar space is established for the results of surface stiffened topology optimization, and the transformation from surface optimization results to planar optimization results is realized based on forward mesh mapping. Then, for the planar optimization results, the contour feature parameters are extracted based on the image morphology method, and the geometric model is reconstructed by spline curve interpolation to obtain the parametric model of the planar optimization results. Finally, based on the inverse mapping mesh mapping method, the parametric model of the surface optimization results is obtained, and the parametric reconstruction of the topology optimization results of the surface stiffened structure is realized. Based on the proposed method, three typical curved stiffened structures of bearing cylinder, cabin door and sealed cabin are taken as examples, and the reconstruction results are compared with the optimization results. The results show that the error between the structural response of the parametric reconstruction model and the topology optimization result is within 5%, indicating that the proposed method has excellent reconstruction accuracy.
1 | SIGMUND O. A 99 line topology optimization code written in Matlab[J]. Structural and Multidisciplinary Optimization, 2001, 21: 120-127. |
2 | BOURDIN B. Filters in topology optimization[J]. International Journal for Numerical Methods in Engineering, 2001, 50(9): 2143-2158. |
3 | BRUNS T E, TORTORELLI D A. Topology optimization of non-linear elastic structures and compliant mechanisms[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(26-27): 3443-3459. |
4 | SIGMUND O. Morphology-based black and white filters for topology optimization[J]. Structural and Multidisciplinary Optimization, 2007, 33: 401-424. |
5 | PETERSSON J, SIGMUND O. Slope constrained topology optimization[J]. International Journal for Numerical Methods in Engineering, 1998, 41(8): 1417-1434. |
6 | HABER R B, JOG C S, BENDS?E M P. A new approach to variable-topology shape design using a constraint on perimeter[J]. Structural Optimization, 1996, 11: 1-12. |
7 | CHRISTIANSEN A N, B?RENTZEN J A, NOBELJ?RGENSEN M, et al. Combined shape and topology optimization of 3D structures[J]. Computers & Graphics, 2015, 46: 25-35. |
8 | BENDS?E M P, SIGMUND O. Material interpolation schemes in topology optimization[J]. Archive of Applied Mechanics, 1999, 69: 635-654. |
9 | GARRIDO-JURADO S, MU?OZ-SALINAS R, MADRID-CUEVAS F J, et al. Automatic generation and detection of highly reliable fiducial markers under occlusion[J]. Pattern Recognition, 2014, 47(6): 2280-2292. |
10 | LIU S, LI Q, LIU J, et al. A realization method for transforming a topology optimization design into additive manufacturing structures[J]. Engineering, 2018, 4(2): 277-285. |
11 | NIEMANN S, KOLESNIKOV B, LOHSE-BUSCH H, et al. The use of topology optimisation in the conceptual design of next generation lattice composite aircraft fuselage structures[J]. Aeronautical Journal, 2013, 117(1197): 1139-1154. |
12 | 周涛, 段薇, 胡三宝, 等. 拓扑优化结果的多视图参数化几何重构方法[J]. 数字制造科学, 2019, 17(1): 68-72. |
ZHOU T, DUAN W, HU S B, et al. Multi-view parametric geometry reconstruction method for optimum topologic results[J]. Digital Manufacturing Science, 2019, 17(1): 68-72 (in Chinese). | |
13 | YI G, KIM N H. Identifying boundaries of topology optimization results using basic parametric features[J]. Structural and Multidisciplinary Optimization, 2017, 55: 1641-1654. |
14 | 金永乔, 胡华洲, 杨长祺, 等. 舱体构件激光扫描和点云重构方法[J]. 装备制造技术, 2020(12): 48-51. |
JIN Y Q, HU H Z, YANG C Q, et al. Laser scanning and point cloud reconstruction of cabin components[J]. Equipment Manufacturing Technology, 2020(12): 48-51 (in Chinese). | |
15 | WIEMANN T, MITSCHKE I, MOCK A, et al. Surface reconstruction from arbitrarily large point clouds[C]∥2018 Second IEEE International Conference on Robotic Computing (IRC). 2018: 278-281. |
16 | 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报, 2014, 35(2): 303-319. |
ZHANG W W, GAO C Q, YE Z Y. Research progress on mesh deformation method in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 303-319 (in Chinese). | |
17 | 唐静, 邓有奇, 马明生, 等. 飞翼气动优化中参数化和网格变形技术[J]. 航空学报, 2015, 36(5): 1480-1490. |
TANG J, DENG Y Q, MA M S, et al. Parameterization and grid deformation techniques for flying-wing aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1480-1490 (in Chinese). | |
18 | LAI C L, WANG J B, LIU C. Parameterized finite element modeling and buckling analysis of six typical composite grid cylindrical shells[J]. Applied Composite Materials, 2014, 21(5): 739-758. |
19 | WANG B, TIAN K, HAO P, et al. Numerical-based smeared stiffener method for global buckling analysis of grid-stiffened composite cylindrical shells[J]. Composite Structures, 2016, 152: 807-815. |
20 | LI L, YUAN T, LI Y, et al. Multidisciplinary design optimization based on parameterized free-form deformation for single turbine[J]. AIAA Journal, 2019, 57(5): 2075-2087. |
21 | MARTIN-BURGOS M J, GONZALEZ-JUAREZ D, ANDRES-PEREZ E. A novel surface mesh deformation method for handling wing-fuselage intersections[J]. Chinese Journal of Aeronautics, 2017, 30(1): 264-273. |
22 | ZHANG W, WANG D, YANG J. A parametric mapping method for curve shape optimization on 3D panel structures[J]. International Journal for Numerical Methods in Engineering, 2010, 84(4): 485-504. |
23 | LIU X, QIN N, XIA H. Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211(2): 405-423. |
24 | TAO J, SUN G, SI J, et al. A robust design for a winglet based on NURBS-FFD method and PSO algorithm[J]. Aerospace Science and Technology, 2017, 70: 568-577. |
25 | RENDALL T C S, ALLEN C B. Efficient mesh motion using radial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 228(17): 6231-6249. |
26 | GANG W, XIN C, ZHIKAN L I U. Mesh deformation on 3D complex configurations using multistep radial basis functions interpolation[J]. Chinese Journal of Aeronautics, 2018, 31(4): 660-671. |
27 | 李增聪, 陈燕, 李红庆, 等. 面向集中力扩散的回转曲面加筋拓扑优化方法[J]. 航空学报, 2021, 42(9): 224616. |
LI Z C, CHEN Y, LI H Q, et al. Topology optimization method for concentrated force diffusion on stiffened curved shell of revolution[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224616 (in Chinese). | |
28 | TIAN K, LI H, HUANG L, et al. Data-driven modelling and optimization of stiffeners on undevelopable curved surfaces[J]. Structural and Multidisciplinary Optimization, 2020, 62: 3249-3269. |
29 | 黎伟, 刘观仕, 姚婷. 膨胀土裂隙图像处理及特征提取方法的改进[J]. 岩土力学, 2014, 35(12): 3619-3626. |
LI W, LIU G S, YAO T. Improvement of methods for crack image processing and crack feature extraction of expansive soil[J]. Rock and Soil Mechanics, 2014, 35(12): 3619-3626 (in Chinese). | |
30 | BUSTACARA-MEDINA C, FLOREZ-VALENCIA L, DIAZ L C. Improved canny edge detector using principal curvatures[J]. Journal of Electrical and Electronic Engineering, 2020, 8(4): 109-116. |
31 | XU H, XU X, ZUO Y. Applying morphology to improve Canny operator’s image segmentation method[J]. The Journal of Engineering, 2019(23): 8816-8819. |
32 | BENDSOE M P, SIGMUND O. Topology optimization: theory, methods, and applications[M]. 2003. |
/
〈 |
|
〉 |