基于ALPFT参数估计的运动目标高分辨率成像
收稿日期: 2024-04-10
修回日期: 2024-05-06
录用日期: 2024-06-21
网络出版日期: 2024-07-08
基金资助
华侨大学人才项目(10BS312)
High resolution imaging of moving targets based on ALPFT parameter estimation
Received date: 2024-04-10
Revised date: 2024-05-06
Accepted date: 2024-06-21
Online published: 2024-07-08
Supported by
Huaqiao University Talent Program(10BS312)
针对调频连续波合成孔径雷达(FMCW SAR)对地面恒加速运动目标的运动参数估计及高分辨率成像问题展开研究。首先,建立FMCW SAR系统下的运动目标回波模型,提出自适应局部多项式傅里叶变换(ALPFT)对高达四阶的多普勒相位进行估计。其次,通过广义Keystone变换和Hough变换对距离徙动项进行校正,同时完成运动目标的速度信息估计。最后,通过补偿高阶多普勒相位以及方位重采样操作,实现对非中心目标的剩余空变相位的补偿,使场景中所有运动目标聚焦效果良好。仿真结果验证了所提方法的可行性和有效性。
关键词: 调频连续波合成孔径雷达; 恒加速运动目标参数估计; 自适应局部多项式傅里叶变换; 广义Keystone变换; Hough变换; 方位重采样
贺靖 , 谭鸽伟 . 基于ALPFT参数估计的运动目标高分辨率成像[J]. 航空学报, 2025 , 46(1) : 330502 -330502 . DOI: 10.7527/S1000-6893.2024.30502
In this paper, the problem of parameter estimation and imaging of ground moving targets with constant acceleration for Frequency Modulated Continuous Wave Synthetic Aperture Radar (FMCW SAR) is studied. Firstly, the echo model of moving targets in the FMCW SAR system is established, and the Adaptive Local Polynomial Fourier Transform (ALPFT) is proposed to estimate the Doppler phase of echoes up to the fourth order. Secondly, the range migration terms are corrected by generalized Keystone transform and Hough transform, and the velocity information of moving targets is estimated at the same time. Finally, by compensating for the high-order Doppler phases and performing the azimuth resampling of non-central moving targets, all moving objects in the scene can be focused well. Simulation results verify the feasibility and effectiveness of the proposed method.
1 | 王金伟, 周峰, 吴玉峰, 等. FMCW-SAR体制下快速运动目标检测与成像方法[J]. 电子与信息学报, 2014, 36( 11): 2684- 2690. |
WANG J W, ZHOU F, WU Y F, et al. Approach for fast-moving target detection and imaging in FMCW SAR[J]. Journal of Electronics & Information Technology, 2014, 36( 11): 2684- 2690 (in Chinese). | |
2 | TAN S, ZHUANG L, YU H, et al. A ground fast-moving target focusing and motion parameters estimation method for SAR[C]∥ International Conference on Radar Systems (RADAR 2022). London: IET, 2023: 617- 622. |
3 | WU D M, KIANG J F. Dual-channel airborne SAR imaging of ground moving targets on perturbed platform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5205814. |
4 | ZHU C B, GUAN Y F. Study of ground moving target parameters estimation and imaging for Mini-SAR[C]∥ 2017 2nd International Conference on Image, Vision and Computing (ICIVC). Piscataway: IEEE Press, 2017: 587- 591. |
5 | ZENG C, LI D, LUO X, et al. Ground maneuvering targets imaging for synthetic aperture radar based on second-order Keystone transform and high-order motion parameter estimation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12( 11): 4486- 4501. |
6 | 王学敏, 于洪波, 张翔宇, 等. 基于Hough变换检测前跟踪的水下多目标被动检测方法[J]. 兵工学报, 2023, 44( 7): 2114- 2121. |
WANG X M, YU H B, ZHANG X Y, et al. Underwater multi-target detection method based on Hough transform track-before-detect technique[J]. Acta Armamentarii, 2023, 44( 7): 2114- 2121 (in Chinese). | |
7 | 梁毅, 王虹现, 邢孟道, 等. 调频连续波SAR慢速动目标参数估计与成像[J]. 系统工程与电子技术, 2011, 33( 5): 1001- 1006. |
LIANG Y, WANG H X, XING M D, et al. Slow ground moving target parameter estimation and imaging in FMCW SAR[J]. Systems Engineering and Electronics, 2011, 33( 5): 1001- 1006 (in Chinese). | |
8 | 梁颖, 张群, 武勇, 等. 一种FMCW SAR地面运动目标谱图域参数估计方法[J]. 航空学报, 2016, 37( 5): 1614- 1621. |
LIANG Y, ZHANG Q, WU Y, et al. A ground moving target parameter estimation method in spectrogram for FMCW SAR[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37( 5): 1614- 1621 (in Chinese). | |
9 | CASALINI E, FRIOUD M, SMALL D, et al. Refocusing FMCW SAR moving target data in the wavenumber domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57( 6): 3436- 3449. |
10 | CASALINI E, FAGIR J, HENKE D. Moving target refocusing with the FMCW SAR system MIRANDA-35[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 1283- 1291. |
11 | XU W D, WANG B N, XIANG M S, et al. A novel autofocus framework for UAV SAR imagery: motion error extraction from symmetric triangular FMCW differential signal[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5218915. |
12 | 申晓天, 郑明洁. 一种新的基于FrFT的动目标测速和定位方法[J]. 中国科学院大学学报, 2023, 40( 1): 84- 92. |
SHEN X T, ZHENG M J. A new method of moving target velocity measurement and location based on FrFT[J]. Journal of University of Chinese Academy of Sciences, 2023, 40( 1): 84- 92 (in Chinese). | |
13 | GUNER K K, GULUM T O, ERKMEN B. FPGA-based wigner–hough transform system for detection and parameter extraction of LPI radar LFMCW signals[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 2003515. |
14 | CHEN Z Y, LI L, WAN J, et al. Efficient ground moving target imaging method for synthetic aperture radar with target azimuth ambiguity[J]. IEEE Sensors Journal, 2021, 21( 20): 23297- 23307. |
15 | LI X, HUANG L B, ZHANG S S, et al. Phase compensation and time-reversal transform for high-order maneuvering target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4025905. |
16 | DU H G, SONG Y P, JIANG N, et al. A novel SAR ground maneuvering target imaging method based on adaptive phase tracking[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5211916. |
17 | 周辉, 赵凤军, 杨健. 基于三阶多项式傅里叶变换的SAR地面加速运动目标参数估计与成像[J]. 电子与信息学报, 2016, 38( 4): 919- 926. |
ZHOU H, ZHAO F J, YANG J. SAR accelerating moving target parameter estimation and imaging based on three-order polynomial Fourier transform[J]. Journal of Electronics & Information Technology, 2016, 38( 4): 919- 926 (in Chinese). | |
18 | YOU D, SUN G C, XING M D, et al. SAR ground maneuvering targets imaging and motion parameters estimation based on the adaptive polynomial Fourier transform[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 4000805. |
19 | WANG X, LI H C. Bistatic SAR moving targets refocus based on polar formatted phase error analysis and clutter separation[J]. IEEE Transactions on Computational Imaging, 2023, 8: 1170- 1183. |
20 | YANG J, LIU C, WANG Y F. Detection and imaging of ground moving targets with real SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53( 2): 920- 932. |
21 | DAKOVI? M, DJUROVI? I, STANKOVI? L. Adaptive local polynomial Fourier transform[C]∥ 2002 11th European Signal Processing Conference. Piscataway: IEEE Press, 2002: 1- 4. |
22 | 杨利超, 高悦欣, 邢孟道, 等. 基于广义keystone和频率变标的微波光子ISAR高分辨实时成像算法[J]. 雷达学报, 2019, 8( 2): 215- 223. |
YANG L C, GAO Y X, XING M D, et al. High resolution microwave photonics radar real-time imaging based on generalized keystone and frequency scaling[J]. Journal of Radars, 2019, 8( 2): 215- 223 (in Chinese). | |
23 | 徐熙毅, 谭鸽伟, 李彪. 基于空变分离的两步聚焦双基曲线合成孔径雷达成像[J]. 兵工学报, 2022, 43( 6): 1365- 1375. |
XU X Y, TAN G W, LI B. Two-step imaging of bistatic SAR with curvilinear trajectory based on space-variant separation[J]. Acta Armamentarii, 2022, 43( 6): 1365- 1375 (in Chinese). | |
24 | 王鹏飞, 詹珩艺, 孙洪忠. 双基前视雷达二维空变补偿频域成像方法[J]. 系统工程与电子技术, 2023, 45( 7): 1990- 2001. |
WANG P F, ZHAN H Y, SUN H Z. Two-dimensional spatial-variant compensation frequency domain imaging method for bistatic forward-looking radar[J]. Systems Engineering and Electronics, 2023, 45( 7): 1990- 2001 (in Chinese). | |
25 | 李根, 马彦恒, 熊旭颖. 基于二维空变运动补偿的机动平台大斜视SAR稀疏自聚焦方法[J]. 电子与信息学报, 2021, 43( 7): 1992- 1999. |
LI G, MA Y H, XIONG X Y. Sparse autofocus method for maneuvering platform high-squint SAR based on two-dimensional spatial-variant motion compensation[J]. Journal of Electronics & Information Technology, 2021, 43( 7): 1992- 1999 (in Chinese). | |
26 | ZHANG F, CHEN Y Q, BI G A. Adaptive harmonic fractional Fourier transform[J]. IEEE Signal Processing Letters, 1999, 6( 11): 281- 283. |
/
〈 |
|
〉 |