航空发动机气动热不确定性专栏

几何偏差对可控扩散叶型性能影响规律及机理

  • 孟德君 ,
  • 史文斌 ,
  • 刘佳鑫 ,
  • 徐朋飞 ,
  • 王丁喜 ,
  • 于贤君
展开
  • 1.西北工业大学 国家卓越工程师学院,西安 710072
    2.中国航发沈阳发动机研究所,沈阳 110015
    3.北京航空航天大学 航空发动机研究院,北京 102206
    4.中国民用航空适航审定中心,北京 100102
.E-mail: 762406405@qq.com

收稿日期: 2024-04-22

  修回日期: 2024-05-13

  录用日期: 2024-06-17

  网络出版日期: 2024-07-01

基金资助

国家级项目

Influence of geometric variation on aerodynamic performance of controlled diffusion airfoil

  • Dejun MENG ,
  • Wenbin SHI ,
  • Jiaxin LIU ,
  • Pengfei XU ,
  • Dingxi WANG ,
  • Xianjun YU
Expand
  • 1.National Elite Institute of Engineering,Northwestern Polytechnical University,Xi’an 710072,China
    2.AECC Shenyang Engine Research Institute,Shenyang 110015,China
    3.Research Institute of Aero-Engine,Beihang University,Beijing 102206,China
    4.CAAC Airworthiness Certification Center,Beijing 100102,China
E-mail: 762406405@qq.com

Received date: 2024-04-22

  Revised date: 2024-05-13

  Accepted date: 2024-06-17

  Online published: 2024-07-01

Supported by

National Level Project

摘要

为了研究几何偏差对叶型性能的影响规律和机理,采用Hicks-Henne函数模化叶型轮廓度偏差、轮廓度变化率偏差,并叠加在可控扩散叶型(CDA)上,对偏差叶型进行了S1流面数值计算。计算结果表明,轮廓度变化率较小时,叶型性能随正负轮廓度偏差幅值的变化趋势是对称的,但轮廓度变化率较大时,正负轮廓度偏差均会导致叶型性能下降,正偏差的影响超过负偏差。几何偏差造成的附面层局部分离甚至提前转捩是叶型性能降低的主要原因。基于上述研究建立了CDA叶型几何偏差敏感区,敏感区域包括距离前缘5%弦长以内的叶型区域及附面层转捩点之前的吸力面区域。偏差敏感区有利于改进加工公差准则,降低压气机气动性能风险。

本文引用格式

孟德君 , 史文斌 , 刘佳鑫 , 徐朋飞 , 王丁喜 , 于贤君 . 几何偏差对可控扩散叶型性能影响规律及机理[J]. 航空学报, 2024 , 45(19) : 630565 -630565 . DOI: 10.7527/S1000-6893.2024.30565

Abstract

This paper conducts research on the law and mechanism of influence of local geometric variations on airfoil performance. The Hicks-Henne function is used to model the contour variation and contour gradient variation of Controlled Diffusion Airfoil (CDA) to perform S1 stream surface numerical calculation. The calculation results indicate that the trend of variation of blade performance with positive and negative airfoil contour variation amplitude is symmetrical, when airfoil contour gradient variation is small. However, when airfoil contour gradient variation is large, both positive and negative airfoil contour variations lead to a decrease in airfoil performance, and influence of positive variations surpasses that of negative variations. Boundary layer separation and even transition in advance caused by geometric variations is the major reason for the decrease in airfoil performance. Based on the research results, the sensitive regions for CDA are established, which are within 5% chord from the leading edge and the suction surface before boundary layer transition. The variation sensitive regions are conducive to improving processing tolerance criteria and reducing the aerodynamic performance risk of compressors.

参考文献

1 刘维伟, 李杰光, 赵明, 等. 航空发动机薄壁叶片加工变形误差补偿技术研究[J]. 机械设计与制造2009(10): 175-177.
  LIU W W, LI J G, ZHAO M, et al. Research on the compensation of deformation error in NC machining of thin-walled blades[J]. Machinery Design & Manufacture2009(10): 175-177 (in Chinese).
2 蔡景, 李鑫, 肖罗椿, 等. 竞争风险模型下变环境的发动机叶片可靠性分析[J]. 航空动力学报201732(2): 398-404.
  CAI J, LI X, XIAO L C, et al. Reliability analysis of engine blade under varied environment with competing risk model[J]. Journal of Aerospace Power201732(2): 398-404 (in Chinese).
3 BALAN C, TABAKOFF W. Axial flow compressor performance deterioration[C]?∥ 20th Joint Propulsion Conference. Reston: AIAA, 1984.
4 ROBERTS W B. Axial compressor performance restoration by blade profile control[C]∥ Proceedings of ASME 1984 International Gas Turbine Conference and Exhibit.New York: ASME, 1984.
5 HUYSE L. Solving problems of optimization under uncertainty as statistical decision problems[C]?∥ 19th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2001.
6 LI W, HUYSE L, PADULA S. Robust airfoil optimization to achieve drag reduction over a range of Mach numbers[J]. Structural and Multidisciplinary Optimization200224(1): 38-50.
7 CUMPSTY N A. Compressor aerodynamics[M]. London:Longman Scientific and Technical, 2004.
8 SUDER K L, CHIMA R V, STRAZISAR A J, et al. The effect of adding roughness and thickness to a transonic axial compressor rotor[C]∥ Proceedings of ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. New York: ASME, 1995.
9 GOODHAND M N, MILLER R J, LUNG H W. The sensitivity of 2D compressor incidence range to In-service geometric variation[C]∥ Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. New York: ASME, 2013: 159-170.
10 GOODHAND M N, MILLER R J, LUNG H W. The impact of geometric variation on compressor two-dimensional incidence range[J]. Journal of Turbomachinery2015137(2): 021007.
11 GARZON V E, DARMOFAL D L. Using computational fluid dynamics in probabilistic engineering design[C]∥ 15th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2001.
12 GARZON V E. Probabilistic aerothermal design of compressor airfoils[D]. Cambridge: Massachusetts Institute of Technology, 2003.
13 GARZON V E, DARMOFAL D L. Impact of geometric variability on axial compressor performance[J]. Journal of Turbomachinery2003125(4): 692-703.
14 DOW E A, WANG Q. Simultaneous robust design and tolerancing of compressor blades[C]∥ Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. New York: ASME, 2014.
15 张伟昊, 邹正平, 李维, 等. 叶型偏差对涡轮性能影响的非定常数值模拟研究[J]. 航空学报201031(11): 2130-2138.
  ZHANG W H, ZOU Z P, LI W, et al. Unsteady numerical simulation investigation of effect of blade profile deviation on turbine performance[J]. Acta Aeronautica et Astronautica Sinica201031(11): 2130-2138 (in Chinese).
16 张伟昊, 邹正平, 刘火星, 等. 叶型偏差对整机环境中涡轮性能的影响[J]. 工程热物理学报201031(11): 1830-1834.
  ZHANG W H, ZOU Z P, LIU H X, et al. Effect of profile deviation on turbine performance in whole engine environment[J]. Journal of Engineering Thermophysics201031(11): 1830-1834 (in Chinese).
17 高丽敏, 蔡宇桐, 曾瑞慧, 等. 叶片加工误差对压气机叶栅气动性能的影响[J]. 推进技术201738(3): 525-531.
  GAO L M, CAI Y T, ZENG R H, et al. Effects of blade machining error on compressor cascade aerodynamic performance[J]. Journal of Propulsion Technology201738(3): 525-531 (in Chinese).
18 高丽敏, 杨光, 王浩浩, 等. 波纹对高亚音叶型气动敏感位置和宽度研究[J]. 工程热物理学报202344(1): 78-85.
  GAO L M, YANG G, WANG H H, et al. Research on the aerodynamic sensitive position and width of waviness on the high subsonic profile[J]. Journal of Engineering Thermophysics202344(1): 78-85 (in Chinese).
19 高丽敏, 杨光, 王浩浩,等. 波纹对高负荷压气机叶型的影响[J]. 西安交通大学学报202357(3):117-128.
  GAO L M, YANG G, WANG H H, et al. Effect of waviness deviation on the blade profile of the high-load compressor[J]. Journal of Xi’an Jiaotong University202357(3):117-128 (in Chinese) .
20 高丽敏, 王浩浩, 杨光,等. 关于前缘加工缺陷及气动合格性的探讨[J]. 推进技术202344(1):22010031.
  GAO L M, WANG H H, YANG G, et al. Discussion on machining defects of blade leading edge and aerodynamic qualification[J]. Journal of Propulsion Technology202344(1): 22010031 (in Chinese).
21 于贤君, 庞健, 刘宝杰. 低速模拟在叶型加工偏差影响研究的应用[J]. 工程热物理学报201839(7): 1436-1446.
  YU X J, PANG J, LIU B J. The application of low-speed simulation in researching the impact of blades manufacturing deviation on aerodynamic performance[J]. Journal of Engineering Thermophysics201839(7): 1436-1446 (in Chinese).
22 于贤君, 李明志, 安广丰, 等. 高压压气机出口级叶型加工偏差影响的相关性分析[J]. 工程热物理学报202243(4): 929-938.
  YU X J, LI M Z, AN G F, et al. Correlation analysis on the influence of manufacture deviation for the compressor blade airfoils of a high-pressure compressor outlet stage[J]. Journal of Engineering Thermophysics202243(4): 929-938 (in Chinese).
23 刘佳鑫, 于贤君, 孟德君, 等. 高压压气机出口级叶型加工偏差特征及其影响[J]. 航空学报202142(2): 342-358.
  LIU J X, YU X J, MENG D J, et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica202142(2): 342-358 (in Chinese).
24 中国航空工业总公司. 叶片叶型的标注、公差与叶身表面粗糙度: [S]. 北京: 中国航空工业总公司, 1999.
  Aviation Industry Corporation of China. Blade labeling,tolerance and surface roughness: [S]. Beijing: Aviation Industry Corporation of China, 1999 (in Chinese).
25 HICKS R M, HENNE P A. Wing design by numerical optimization[J]. Journal of Aircraft197815(7): 407-412.
26 DRELA M, YOUNGREN H. A user’s guide to mises 2.53[M]. Cambridge: MIT Fluid Dynamics Research Laboratory, 1998.
27 GOODHAND M N, MILLER R J. Compressor leading edge spikes: A new performance criterion[C]∥ Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, and Air. New York: ASME, 2010: 1553-1562.
28 刘宝杰, 徐晓斌, 于贤君, 等. CDA叶型前缘流动的实验和数值研究[J]. 工程热物理学报201940(8): 1767-1774.
  LIU B J, XU X B, YU X J, et al. Experimental and numerical investigation on the flow near the leading-edge of controlled diffusion airfoil[J]. Journal of Engineering Thermophysics201940(8): 1767-1774 (in Chinese).
29 CARTER A D S. Blade profiles for axial-flow fans, pumps, compressors, etc[J]. Proceedings of the Institution of Mechanical Engineers1961175(1): 775-806.
文章导航

/