基于FDM技术的填充型阶梯结构宽频吸波体
收稿日期: 2024-04-03
修回日期: 2024-05-06
录用日期: 2024-06-17
网络出版日期: 2024-07-01
基金资助
2022年产业技术基础公共服务平台(2022-232-223);水电机械设备设计与维护湖北省重点实验室开放基金(2022KJX 05)
Broadband wave absorber with filled step-structured design using FDM technology
Received date: 2024-04-03
Revised date: 2024-05-06
Accepted date: 2024-06-17
Online published: 2024-07-01
Supported by
2022 Industrial Technology Foundation Public Service Platform(2022-232-223);Hubei Provincial Key Laboratory of Hydropower Machinery and Equipment Design and Maintenance Open Fund(2022KJX 05)
宽带吸收是吸波体向实际应用发展亟须解决的难题。基于熔融沉积成型(FDM)技术制备吸波体壳体,以自制的石墨烯(rGO)-Fe3O4/乙基纤维素(EC)复合微球为吸波剂,研究单元结构几何参数和材料层间分布对吸波性能的影响,通过归一化处理,分析等效阻抗匹配的变化特性。研究结果表明,该吸波体具有宽带吸收、极化无关特性和大角度吸收特性:该吸波体实物测试结果实现了2~18 GHz频段内99%带宽(2.1~18.0 GHz)的有效吸收(反射损耗低于-10 dB),两个反射损耗峰值的测试强度依次为-21.9、-24.1 dB,与CST仿真的2~18 GHz全频段有效吸收、峰值强度-20.6 dB和-20.1 dB的模拟结果相吻合;对于横电波(TE)极化而言,当入射角度为40°时仍然能维持15 GHz的有效吸收带宽,在50°时还能保持X、Ku波段的有效吸收。吸波体表现出的吸波性能归因于其合理的等效阻抗匹配调控,与此同时,其结构中梯度参数可显著增加电磁波的反射次数,充分利用了电磁波的衍射能力。
叶永盛 , 刘沁锋 , 贾瑞鹏 , 丁迪 , 焦未冬 , 叶喜葱 , 吴海华 , 何恩义 . 基于FDM技术的填充型阶梯结构宽频吸波体[J]. 航空学报, 2025 , 46(1) : 430486 -430486 . DOI: 10.7527/S1000-6893.2024.30486
Broadband absorption poses a significant challenge in the development of wave absorbers for practical applications. We utilized Fused Deposition Modeling (FDM) technology to fabricate the absorber shell, by employing homemade Graphene (rGO)-Fe3O4/Ethyl Cellulose Ethoce (EC) composite microspheres as the absorber material. We investigated the influence of geometric parameters of the unit structure and the inter-layer distribution of materials on the absorption performance, and analyzed the variation characteristics of equivalent impedance matching through normalization. Our findings demonstrate that the absorber exhibits broadband absorption, polarization-independent characteristics, and large-angle absorption properties. Physical testing of the absorber reveals a 99% effective absorption (reflection loss less than -10 dB) bandwidth (2.1 GHz to 18.0 GHz) within the 2 GHz to 18 GHz range, with peak reflective loss intensities of -21.9 dB and -24.1 dB, respectively. These results closely align with CST simulations, demonstrating effective absorption and peak intensities of -20.6 dB and -20.1 dB over the entire 2 GHz to 18 GHz range. For Transverse Electric Wave (TE) polarization, the absorber maintains a 15 GHz effective absorption bandwidth at an incident angle of 40°, and effective absorption in the X and Ku bands at 50°. The absorber's performance is attributed to well-regulated equivalent impedance matching, while the gradient parameters within its structure significantly increase the number of electromagnetic wave reflections, thereby fully utilizing the diffraction capabilities of electromagnetic waves.
1 | SUN X X, LI Y B, HUANG Y X, et al. Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials[J]. Advanced Functional Materials, 2022, 32(5): 2107508. |
2 | DUAN Y B, LIANG Q X, YANG Z, et al. A wide-angle broadband electromagnetic absorbing metastructure using 3D printing technology[J]. Materials & Design, 2021, 208: 109900. |
3 | WANG H, XIU X, WANG Y, et al. Paper-based composites as a dual-functional material for ultralight broadband radar absorbing honeycombs[J]. Composites Part B: Engineering, 2020, 202: 108378. |
4 | NING J, DONG S F, LUO X Y, et al. Ultra-broadband microwave absorption by ultra-thin metamaterial with stepped structure induced multi-resonances[J]. Results in Physics, 2020, 18: 103320. |
5 | LIU T, XU Y G, ZHENG D L, et al. Fabrication and absorbing property of the tower-like absorber based on 3D printing process[J]. Physica B: Condensed Matter, 2019, 553: 88-95. |
6 | YOUNES H, LI R, LEE S E, et al. Gradient 3D-printed honeycomb structure polymer coated with a composite consisting of Fe3O4 multi-granular nanoclusters and multi-walled carbon nanotubes for electromagnetic wave absorption[J]. Synthetic Metals, 2021, 275: 116731. |
7 | SON W L, ZHOU Z L, WANG L C,et al. Constructing repairable meta-structures of ultra-broad-band electromagnetic absorption from three-dimensional printed patterned shells[J].ACS Applied Materials & Interfaces, 2017, 9(49): 43179-43187. |
8 | XIONG H, HONG J S, LUO C M, et al. An ultrathin and broadband metamaterial absorber using multi-layer structures[J]. Journal of Applied Physics, 2013, 114(6): 64109. |
9 | HAO J X, ZHANG B Z, JING H H, et al. A transparent ultra-broadband microwave absorber based on flexible multilayer structure[J]. Optical Materials, 2022, 128: 112173. |
10 | XING R Z, XU G X, QU N, et al. 3D printing of liquid-metal-in-ceramic metamaterials for high-efficient microwave absorption[J]. Advanced Functional Materials, 2024, 34(31): 2307499. |
11 | YE X C, YANG C, HE E Y, et al. Optimization design of 3D-printed pyramid structure for broadband electromagnetic wave absorption[J]. Journal of Alloys and Compounds, 2023, 963: 171258. |
12 | 叶永盛, 丁迪, 吴海华, 等. 石墨烯增强Fe3O4/Ec复合微球吸波性能[J]. 航空学报, 2023, 44(11): 427549. |
YE Y S, DING D, WU H H, et al. Graphene-enhanced Fe3O4/ethylcellulose composite microspheres with wave absorption properties[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(11): 427549 (in Chinese). | |
13 | SHEN Y, ZHANG J Q, PANG Y Q, et al. Thermally tunable ultra-wideband metamaterial absorbers based on three-dimensional water-substrate construction[J]. Scientific Reports, 2018, 8: 4423. |
14 | ZHANG K L, ZHANG J Y, HOU Z L, et al. Multifunctional broadband microwave absorption of flexible graphene composites[J]. Carbon, 2019, 141: 608-617. |
15 | DENG G S, CHEN W Q, YU Z C, et al. 3D-printed dielectric-resonator-based ultra-broadband microwave absorber using water substrate[J]. Journal of Electronic Materials, 2022, 51(5): 2221-2227. |
16 | ZHANG T, DUAN Y P, LIU J Y, et al. Asymmetric electric field distribution enhanced hierarchical metamaterials for radar-infrared compatible camouflage[J]. Journal of Materials Science & Technology, 2023, 146: 10-18. |
17 | YANG R G. Electromagnetic properties and microwave absorption properties of BaTiO3-carbonyl iron composite in S and C bands[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(13): 1805-1810. |
18 | ZHOU Y F, SHEN Z Y, HUANG X J, et al. Ultra-wideband water-based metamaterial absorber with temperature insensitivity[J]. Physics Letters A, 2019, 383(23): 2739-2743. |
19 | LI W, WU T L, WANG W, et al. Broadband patterned magnetic microwave absorber[J]. Journal of Applied Physics, 2014, 116(4): 044110. |
20 | YANG Z, LIANG Q X, DUAN Y B, et al. A 3D-printed lightweight broadband electromagnetic absorbing metastructure with preserved high-temperature mechanical property[J]. Composite Structures, 2021, 274: 114330. |
21 | CHEN X Q, WU Z, ZHANG Z L, et al. Ultra-broadband and wide-angle absorption based on 3D-printed pyramid[J]. Optics & Laser Technology, 2020, 124: 105972. |
22 | 王凤琳, 张娜, 包建军, 等. 基于图案化和超表面结构制备高效宽频吸波材料[J]. 高分子材料科学与工程, 2022,38(1): 131-136. |
WANG F L, ZHANG N, BAO J J, et al. Preparation of efficient broadband absorbing materials based on patterning and metamaterial surface[J]. Polymer Materials Science and Engineering, 38(1): 131-136 (in Chinese). | |
23 | ZHOU Q, SHI T T, XUE B, et al. Multi-scale integrated design and fabrication of ultra-broadband electromagnetic absorption utilizing multi-walled carbon nanotubes-based hierarchical metamaterial[J]. Composites Science and Technology, 2023, 232: 109877. |
24 | HAN M Y, ZHOU M, WU Y, et al. Constructing angular conical FeSiAl/SiO2 composites with corrosion resistance for ultra-broadband microwave absorption[J]. Journal of Alloys and Compounds, 2022, 902: 163792. |
25 | REN J, YIN J Y. 3D-printed low-cost dielectric-resonator-based ultra-broadband microwave absorber using carbon-loaded acrylonitrile butadiene styrene polymer[J]. Materials, 2018, 11(7): 1249. |
26 | SUN H D, ZHANG Y, WU Y, et al. Broadband and high-efficiency microwave absorbers based on pyramid structure[J]. ACS Applied Materials & Interfaces, 2022, 14(46): 52182-52192. |
27 | SUN H D, ZHANG Y, WU Y, et al. Broadband absorption of macro pyramid structure based flame retardant absorbers[J]. Journal of Materials Science & Technology, 2022, 128: 228-238. |
/
〈 |
|
〉 |