大柔性机翼几何非线性结构降阶模型与气动弹性分析
收稿日期: 2024-04-22
修回日期: 2024-05-14
录用日期: 2024-06-24
网络出版日期: 2024-06-25
基金资助
中国科学技术协会青年人才托举工程(YESS20230417);北京市科学技术协会青年人才托举工程(BYESS2023345)
Reduced-order modeling and aeroelastic analysis of geometrically nonlinear structures of large flexible wings
Received date: 2024-04-22
Revised date: 2024-05-14
Accepted date: 2024-06-24
Online published: 2024-06-25
Supported by
Young Elite Scientists Sponsorship Program by CAST(YESS20230417);Young Elite Scientists Sponsorship Program by BAST(BYESS2023345)
几何非线性气动弹性问题是大柔性飞行器设计中的关键问题,准确的大变形结构建模是几何非线性气动弹性分析的基础。相比非线性有限元方法,降阶模型具有阶次低、求解快的优势,但传统的结构模态建模方法并不适用于非线性结构。针对大柔性飞行器机翼,以结构模态作为基底建立非线性结构降阶模型,利用“非侵入式”方式求解非线性刚度系数,补充残量基函数提高结构变形计算精度,计算结果与非线性有限元方法对比具有很好的一致性。结合曲面涡格法建立几何非线性气动弹性分析框架,进行几何非线性静气动弹性变形、颤振及阵风响应分析。结果表明,几何非线性因素对于大柔性机翼气动弹性特性具有重要影响,基于非线性结构降阶模型建立的气动弹性分析方法能够兼顾分析精度、计算效率及复杂模型适用性。
安朝 , 赵睿 , 谢长川 , 杨超 . 大柔性机翼几何非线性结构降阶模型与气动弹性分析[J]. 航空学报, 2024 , 45(S1) : 730569 -730569 . DOI: 10.7527/S1000-6893.2024.30569
Geometrically nonlinear aeroelastic problems are key issues in the design of large flexible aircrafts, and accurate modeling of large deformation structures is the basis for geometrically nonlinear aeroelastic analysis. Compared with the nonlinear finite element method, the reduced order model has the advantages of low order and fast solution, but the traditional structural modal modeling method is not applicable to nonlinear structures. For a large flexible aircraft wing, a nonlinear structural reduced-order model is established with the linear structural mode as the base. Nonlinear stiffness coefficients are solved in a “non-intrusive” way, and residual basis functions are supplemented to improve the accuracy of structural deformation calculation. The calculation results are in good agreement with the results of the nonlinear finite element method. A geometrically nonlinear aeroelastic analysis framework is established by using the non-planar vortex lattice method, and the geometrically nonlinear static aeroelastic deformation, flutter and gust response are analyzed. The results show that the geometric nonlinear factors have an important influence on the design of large flexible wings, and the aeroelastic analysis method based on the nonlinear structural reduced-order model can take into account the analysis accuracy, computational efficiency, and applicability of complex models.
1 | 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3): 623418. |
MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623418 (in Chinese). | |
2 | AFONSO F, VALE J, OLIVEIRA é, et al. A review on non-linear aeroelasticity of high aspect-ratio wings[J]. Progress in Aerospace Sciences, 2017, 89: 40-57. |
3 | PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelastic analysis of complete aircraft in subsonic flow[J]. Journal of Aircraft, 2000, 37(5): 753-760. |
4 | PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft[J]. Journal of Aircraft, 2001, 38(1): 88-94. |
5 | ROMEO G, FRULLA G, CESTINO E, et al. Nonlinear aeroelastic modeling and experiments of flexible wings[C]∥ 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006. |
6 | ZHAO Y H, HU H Y. Structural modeling and aeroelastic analysis of high-aspect-ratio composite wings[J]. Chinese Journal of Aeronautics, 2005, 18(1): 25-30. |
7 | PALACIOS R, CESNIK C E S. Geometrically nonlinear theory of composite beams with deformable cross sections[J]. AIAA Journal, 2008, 46(2): 439-450. |
8 | PATIL M, HODGES D, CESNIK C. Limit cycle oscillations in high-aspect-ratio wings[C]∥ 40th Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston: AIAA, 1999. |
9 | 张健, 向锦武. 柔性飞机非线性气动弹性与飞行动力学耦合静、动态特性[J]. 航空学报, 2011, 32(9): 1569-1582. |
ZHANG J, XIANG J W. Static and dynamic characteristics of coupled nonlinear aeroelasticity and flight dynamics of flexible aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1569-1582 (in Chinese). | |
10 | MURUA J, PALACIOS R, GRAHAM J M R. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics[J]. Progress in Aerospace Sciences, 2012, 55: 46-72. |
11 | LIU Y, XIE C C, YANG C, et al. Gust response analysis and wind tunnel test for a high-aspect ratio wing[J]. Chinese Journal of Aeronautics, 2016, 29(1): 91-103. |
12 | 杨智春, 张惠, 谷迎松, 等. 考虑几何非线性效应的大展弦比机翼气动弹性分析[J]. 振动与冲击, 2014, 33(16): 72-75. |
YANG Z C, ZHANG H, GU Y S, et al. Aeroelastic analysis of the high aspect ratio wing considering the geometric nonlinearity[J]. Journal of Vibration and Shock, 2014, 33(16): 72-75 (in Chinese). | |
13 | 王伟, 周洲, 祝小平, 等. 几何大变形太阳能无人机非线性气动弹性稳定性研究[J]. 西北工业大学学报, 2015, 33(1): 1-8. |
WANG W, ZHOU Z, ZHU X P, et al. Exploring aeroelastic stability of very flexible solar powered UAV with geometrically large deformation[J]. Journal of Northwestern Polytechnical University, 2015, 33(1): 1-8 (in Chinese). | |
14 | 崔鹏, 韩景龙. 基于CFD/CSD的非线性气动弹性分析方法[J]. 航空学报, 2010, 31(3): 480-486. |
CUI P, HAN J L. Investigation of nonlinear aeroelastic analysis using CFD/CSD[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 480-486 (in Chinese). | |
15 | MCEWAN M I, WRIGHT J R, COOPER J E, et al. A combined modal/finite element analysis technique for the dynamic response of a non-linear beam to harmonic excitation[J]. Journal of Sound and Vibration, 2001, 243(4): 601-624. |
16 | MCEWAN M, WRIGHT J, COOPER J, et al. A finite element/modal technique for nonlinear plate and stiffened panel response prediction[C]∥ 19th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2001. |
17 | MIGNOLET M P, SOIZE C. Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(45-48): 3951-3963. |
18 | HOLLKAMP J J, GORDON R W, SPOTTSWOOD S M. Nonlinear modal models for sonic fatigue response prediction: A comparison of methods[J]. Journal of Sound and Vibration, 2005, 284(3-5): 1145-1163. |
19 | KIM K, RADU A G, WANG X Q, et al. Nonlinear reduced order modeling of isotropic and functionally graded plates[J]. International Journal of Non-Linear Mechanics, 2013, 49: 100-110. |
20 | FAROOQ U, FEENY B F. Smooth orthogonal decomposition for modal analysis of randomly excited systems[J]. Journal of Sound and Vibration, 2008, 316(1-5): 137-146. |
21 | HARMIN Y, COOPER J. Efficient prediction of aeroelastic response including geometric nonlinearities[C]∥ 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2010. |
22 | HARMIN Y, COOPER J. Aeroelastic behaviour of a wing including geometric nonlinearities[J]. The Aeronautical Journal, 2011, 115(1174): 767-777. |
23 | MEDEIROS R R, CESNIK C E S, COETZEE E B. Computational aeroelasticity using modal-based structural nonlinear analysis[J]. AIAA Journal, 2019, 58(1): 362-371. |
24 | TOUZé C, VIZZACCARO A, THOMAS O. Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques[J]. Nonlinear Dynamics, 2021, 105(2): 1141-1190. |
/
〈 |
|
〉 |